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Introduction

Problem

-> Let F be any family of linear codes.
-> Let G be a random looking generator matrix of a code C ∈ F .

From G , can we recover the structure of the code C?

Here we consider the case where F is the family of quasi-cyclic alternant
codes.
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Introduction

Quasi-cyclic alternant codes

Definition 1
Let x = (x1, . . . , xn) be a n-tuple of distinct elements of Fqm , and
y = (y1, . . . , yn) be an n-tuple of nonzero elements of Fqm ,

GRSk(x , y) := {(y1f (x1), . . . , ynf (xn)) | f ∈ Fqm [X ]<k}.

Fqm GRS(x , y) oo Dual // GRS(x , y⊥)

σ





Subfield Subcode
��

Fq A(x , y) := GRS(x , y⊥) ∩ Fn
q

σ

TT

σ ∈ Aut(GRS(x , y⊥))
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Introduction

Algebraic attack

Algebraic
system

[FOPT10]

Fqm GRS(x , y)

OO

oo Dual // GRS(x , y⊥)

σ





Reduction of
the number
of unknowns

ll

Sub. Sub.
��

Fq A(x , y) := GRS(x , y⊥) ∩ Fn
q

σ

TT
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Introduction

Contribution

Algebraic
system

[FOPT10]

Fqm GRS(x , y)

OO

oo Dual // GRS(x , y⊥)

σ





Reduction of
the number
of unknowns

ll

Sub. Sub.
��

Fq A(x , y) := GRS(x , y⊥) ∩ Fn
q

A(x , y)σ= GRS(x̃ , ỹ⊥) ∩ F
n
`
q

?�

OO
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Quasi-cyclic Alternant Codes Representation of Ak (x, y)

Functions on P1

We consider P1 the projective line over Fqm .
The function field over Fqm of P1 is:

Fqm(P1) :=
{F (X ,Y )

G (X ,Y )
| F ,G ∈ Fqm [X ,Y ] homogeneous of same degree

}
.

A divisor of P1 is a formal sum, with integers coefficients, of points of P1.
For f ∈ Fqm(P1), the principal divisor of f , denoted by (f ), is defined as
the formal sum of zeros and poles of f , counted with multiplicity.

We denote by L(G ) := {f ∈ Fqm(P1) | (f ) ≥ −G} ∪ {0} the
Riemann-Roch space associated to a divisor G .
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Quasi-cyclic Alternant Codes Representation of Ak (x, y)

AG codes on P1

Let P = {P1, . . . ,Pn} be a set of n distinct points of P1
Fqm

and G be a
divisor, then the AG code CL(P1,P,G ) is defined by:

CL(P1,P,G ) := {EvP(f ) | f ∈ L(G )}.

Let x and y be as previously, we define:
→ P := {(xi : 1)| i ∈ {1, . . . , n}},
→ G := (k − 1)P∞ − (f ),

with f ∈ Fqm(P1) the function associated to the interpolation polynomial
of y1, . . . , yn through the points x1, . . . , xn.

Proposition 2

Then GRSk(x , y) is the AG code CL(P1,P,G ) and:

Ak(x , y) := CL(P1,P,G )⊥ ∩ Fn
q.
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Quasi-cyclic Alternant Codes Induced permutations of Alternant Codes

Automorphim group of P1

PGL2(Fqm) is the automorphism group of the projective line P1 defined by:

PGL2(Fqm) :=
{ P1

Fqm
→ P1

Fqm

(x : y) 7→ (ax + by : cx + dy)

∣∣∣{a, b, c , d ∈ Fqm ,

ad − bc 6= 0

}
.

Remark
The permutations of PGL2(Fqm) have also a matrix representation, ie:

∀σ ∈ PGL2(Fqm), we write σ :=

(
a b
c d

)
, with ad − bc 6= 0.

Where the elements a, b, c and d are defined up to a multiplication by a
nonzero scalar.
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Quasi-cyclic Alternant Codes Induced permutations of Alternant Codes

Support and divisor σ-invariant

Let σ be an automorphism of P1
Fqm

.

For a point Q ∈ P1, we denote Orbσ(Q) := {σj(Q) | j ∈ {1..`}}.
We define the support:

P :=

n/`∐
i=1

Orbσ(Qi ), (1)

where the points Qi ∈ P1
Fqm

are pairwise distinct with trivial stabilizer
subgroup.

We define the divisor:

G := t
∑̀
j=1

σj(R), (2)

with R a point of P1
Fqm

, t ∈ Z and deg(G ) = `t.
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Quasi-cyclic Alternant Codes Induced permutations of Alternant Codes

Permutations of Ak(x , y)

The automorphism σ of P1 induces a permutation σ̃ of C = CL(P1,P,G )
defined by:

σ̃ : C −→ C
(f (P1), . . . , f (Pn)) 7−→ (f (σ(P1)), . . . , f (σ(Pn)))·

Then σ̃ is also a permutation of A := C⊥ ∩ Fn
q.
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Quasi-cyclic Alternant Codes Induced permutations of Alternant Codes

Equivalence classes of PGL2(Fqm)

Lemma 3

Let ρ ∈ PGL2(Fqm) be an automorphism on P1. Then σ′ := ρ ◦ σ ◦ ρ−1
induces the same permutation on C as σ.

Three cases are possible, depending on the eigenvalues of the matrix
M := Mat(σ):

1 M ∼
(
a 0
0 1

)
, with a ∈ Fqm ,

2 M ∼
(
1 b
0 1

)
, with b ∈ Fqm ,

3 M ∼
(
a 0
0 1

)
, with a ∈ Fq2m .
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Invariant and Folded Codes Definitions and properties

Let C be a linear code and σ ∈ Perm(C) of order `. Consider:

ϕ : C → C

c 7→
`−1∑
i=0

σi (c).

The folded code of C is defined by

Foldσ(C) := Im(ϕ)

and the invariant code of C is defined by

Cσ := ker(σ − Id).

Proposition 4

The codes Foldσ(C) and Cσ are subcodes of C and:

Foldσ(C) ⊆ Cσ.

If Char (Fqm) - ` then Foldσ(C) = Cσ.
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Invariant and Folded Codes The Invariant Code of Ar (x, y)

If C is a linear code over Fqm , σ-invariant then:

(C ∩ Fn
q)
σ = {c ∈ C | c ∈ Fn

q and σ(c) = c} = Cσ ∩ Fn
q.

Theorem 5

Let GRS(x , y) := CL(P1,P,G ) ⊆ Fn
qm be a σ-invariant AG code, with

σ ∈ PGL2(P1
Fqm

) of order ` and P and G defined as (1) and (2). Then the
invariant code GRS(x , y)σ is a GRS code of length n/`.

Corollary 6

The invariant code A(x , y)σ is an alternant code of length n/`.
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Invariant and Folded Codes The Invariant Code of Ar (x, y)

Lemma 7

Let c := EvP(f ) ∈ CL(P1,P,G ) such that σ(c) = c , then f is σ-invariant,
ie: f ◦ σ = f .

Let G := t
∑̀
j=1

σj(R), with R a rational point of P1
Fqm

and t ∈ Z. We

denote:
σj(R) := (γj : δj), for j ∈ {0, . . . , `− 1}.

Lemma 8
With the previous notation, any f ∈ L(G ) can be written as:

f (X ,Y ) =
F (X ,Y )

`−1∏
j=0

(δjX − γjY )t
,

with F ∈ Fqm [X ,Y ] a homogeneous polynomial of degree t`.
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Invariant and Folded Codes The Invariant Code of Ar (x, y)

Case σ diagonalizable over Fqm :

σ : P1 → P1

(X : Y ) 7→ (aX : Y ),

with a ∈ Fqm .
Case σ trigonalizable over Fqm :

σ : P1 → P1

(X : Y ) 7→ (X + bY : Y )

with b ∈ F∗qm .
Case σ diagonalizable over Fq2m\Fqm :

σ : P1 → P1

(X : Y ) 7→ (aX : Y ),

with a ∈ Fq2m\Fqm .
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Invariant and Folded Codes The Invariant Code of Ar (x, y)

Case σ diagonalizable over Fqm

Proposition 9

If F (aX ,Y ) = F (X ,Y ), then

F (X ,Y ) = R(X `,Y `)

with R ∈ Fqm [X ,Y ] an homogeneous polynomial of degree t.

We denote σj(Pi ) := (αi`+j : βi`+j), for i ∈ {0, . . . , n` − 1},
j ∈ {0, . . . , `− 1}.

Proposition 10

The code (CL(P1,P,G ))σ is the GRS code CL(P1, P̃, G̃ ), with
P̃i = (α`i : β

`
i ),

G̃ = tR̃ , where R̃ =
(
(−1)`−1

`−1∏
j=0

γj :
`−1∏
j=0

δj
)
.
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Invariant and Folded Codes The Invariant Code of Ar (x, y)

Case σ trigonalizable over Fqm

Proposition 11

If F (X + bY ,Y ) = F (X ,Y ), then

F (X ,Y ) = R(X p − bp−1XY p−1,Y p)

with R ∈ Fq[X ,Y ] a homogeneous polynomial of degree t.

Proposition 12

The code (CL(P1,P,G ))σ is the GRS code CL(P1, P̃, G̃ ), with:
P̃i = (αp

i − bp−1αiβ
p−1
i : βpi ),

G̃ = t(R̃), where R̃ =
( p−1∏
j=0

γj :
p−1∏
j=0

δj
)
.
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Invariant and Folded Codes The Invariant Code of Ar (x, y)

Case σ diagonalizable over Fq2m\Fqm

Idea
We extend the code C defined on Fqm to the field Fq2m . We consider
C ⊗ Fq2m := SpanFq2m

< C >, we have:

C ⊗ Fq2m = {EvP(f ) | f ∈ LFq2m
(G )}.

Fq2m C ⊗ Fq2m
Invσ // (C ⊗ Fq2m)

σ

Fqm C Invσ //?�

Sub. Sub.

OO

Cσ
?�

OO
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Invariant and Folded Codes The Invariant Code of Ar (x, y)

Case σ diagonalizable over Fq2m\Fqm

-> C ⊗ Fq2m has a base in Fn
qm .

-> Here p - ` then Foldσ(C) = Cσ. So (C ⊗Fq2m)
σ has also a base in Fn

qm .
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?�
Sub. Sub.
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Conclusion

Conclusion

Results:
The invariant code of a quasi-cyclic GRS code is a GRS code.
The security of alternant codes with induced permutation from the
projective linear group, is reduced to the security of the invariant code
which is an alternant code.

Works in progress:
Security of AG codes on cyclic cover of the projective line.
Security of AG codes on cyclic covers of plane curves of genus > 0.

Thank you!
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