On the security of Some Compact Keys for McEliece Scheme

Élise Barelli

INRIA Saclay and LIX, CNRS UMR 7161 École Polytechnique, 91120 Palaiseau Cedex

Journées Codage et Cryptographie 2017

Problem

- -> Let \mathcal{F} be any family of linear codes.
- -> Let G be a random looking generator matrix of a code $\mathcal{C} \in \mathcal{F}$.

From G, can we recover the structure of the code C?

Here we consider the case where ${\cal F}$ is the family of **quasi-cyclic alternant codes**.

Quasi-cyclic alternant codes

Definition 1

Let $x = (x_1, ..., x_n)$ be a *n*-tuple of distinct elements of \mathbb{F}_{q^m} , and $y = (y_1, ..., y_n)$ be an *n*-tuple of nonzero elements of \mathbb{F}_{q^m} ,

$$GRS_k(x,y) := \{ (y_1 f(x_1), \dots, y_n f(x_n)) \mid f \in \mathbb{F}_{q^m}[X]_{< k} \}.$$

Algebraic attack

Contribution

Quasi-cyclic Alternant Codes

- Representation of $A_k(x, y)$ as a subfield subcode of an AG code
- Induced permutations of Alternant Codes

3

Invariant and Folded Codes

- Definitions and properties
- The Invariant Code of $A_r(x, y)$

Functions on \mathbb{P}^1

We consider \mathbb{P}^1 the projective line over \mathbb{F}_{q^m} . The function field over \mathbb{F}_{q^m} of \mathbb{P}^1 is:

 $\mathbb{F}_{q^m}(\mathbb{P}^1) := \Big\{ \frac{F(X,Y)}{G(X,Y)} \mid F, G \in \mathbb{F}_{q^m}[X,Y] \text{ homogeneous of same degree} \Big\}.$

Functions on \mathbb{P}^1

We consider \mathbb{P}^1 the projective line over \mathbb{F}_{q^m} . The function field over \mathbb{F}_{q^m} of \mathbb{P}^1 is:

$$\mathbb{F}_{q^m}(\mathbb{P}^1) := \Big\{ rac{F(X,Y)}{G(X,Y)} \mid F, G \in \mathbb{F}_{q^m}[X,Y] ext{ homogeneous of same degree} \Big\}$$

A divisor of \mathbb{P}^1 is a formal sum, with integers coefficients, of points of \mathbb{P}^1 . For $f \in \mathbb{F}_{q^m}(\mathbb{P}^1)$, the principal divisor of f, denoted by (f), is defined as the formal sum of zeros and poles of f, counted with multiplicity.

Functions on \mathbb{P}^1

We consider \mathbb{P}^1 the projective line over \mathbb{F}_{q^m} . The function field over \mathbb{F}_{q^m} of \mathbb{P}^1 is:

$$\mathbb{F}_{q^m}(\mathbb{P}^1) := \Big\{ rac{F(X,Y)}{G(X,Y)} \mid F, G \in \mathbb{F}_{q^m}[X,Y] ext{ homogeneous of same degree} \Big\}$$

A divisor of \mathbb{P}^1 is a formal sum, with integers coefficients, of points of \mathbb{P}^1 . For $f \in \mathbb{F}_{q^m}(\mathbb{P}^1)$, the principal divisor of f, denoted by (f), is defined as the formal sum of zeros and poles of f, counted with multiplicity.

We denote by $\mathcal{L}(G) := \{ f \in \mathbb{F}_{q^m}(\mathbb{P}^1) \mid (f) \ge -G \} \cup \{0\}$ the Riemann-Roch space associated to a divisor G.

AG codes on \mathbb{P}^1

Let $\mathcal{P} = \{P_1, \ldots, P_n\}$ be a set of *n* distinct points of $\mathbb{P}^1_{\mathbb{F}_{q^m}}$ and *G* be a divisor, then the AG code $C_{\mathcal{L}}(\mathbb{P}^1, \mathcal{P}, G)$ is defined by:

$$C_{\mathcal{L}}(\mathbb{P}^1, \mathcal{P}, G) := \{ \mathsf{Ev}_{\mathcal{P}}(f) \mid f \in \mathcal{L}(G) \}.$$

AG codes on \mathbb{P}^1

Let $\mathcal{P} = \{P_1, \ldots, P_n\}$ be a set of *n* distinct points of $\mathbb{P}^1_{\mathbb{F}_{q^m}}$ and *G* be a divisor, then the AG code $C_{\mathcal{L}}(\mathbb{P}^1, \mathcal{P}, G)$ is defined by:

$$C_{\mathcal{L}}(\mathbb{P}^1,\mathcal{P},G) := \{\mathsf{Ev}_{\mathcal{P}}(f) \mid f \in \mathcal{L}(G)\}.$$

Let x and y be as previously, we define:

with $f \in \mathbb{F}_{q^m}(\mathbb{P}^1)$ the function associated to the interpolation polynomial of y_1, \ldots, y_n through the points x_1, \ldots, x_n .

Proposition 2

Then $GRS_k(x, y)$ is the AG code $C_{\mathcal{L}}(\mathbb{P}^1, \mathcal{P}, G)$ and:

$$\mathcal{A}_k(x,y) := \mathcal{C}_{\mathcal{L}}(\mathbb{P}^1,\mathcal{P},G)^{\perp} \cap \mathbb{F}_q^n.$$

Automorphim group of \mathbb{P}^1

 $\mathsf{PGL}_2(\mathbb{F}_{q^m})$ is the automorphism group of the projective line \mathbb{P}^1 defined by:

$$\mathsf{PGL}_2(\mathbb{F}_{q^m}) := \Big\{ \begin{array}{cc} \mathbb{P}^1_{\mathbb{F}_{q^m}} & \to & \mathbb{P}^1_{\mathbb{F}_{q^m}} \\ (x:y) & \mapsto & (ax+by:cx+dy) \end{array} \Big| \begin{cases} a,b,c,d \in \mathbb{F}_{q^m}, \\ ad-bc \neq 0 \end{cases} \Big\}.$$

Automorphim group of \mathbb{P}^1

 $\mathsf{PGL}_2(\mathbb{F}_{q^m})$ is the automorphism group of the projective line \mathbb{P}^1 defined by:

$$\mathsf{PGL}_2(\mathbb{F}_{q^m}) := \Big\{ \begin{array}{ccc} \mathbb{P}^1_{\mathbb{F}_{q^m}} & \to & \mathbb{P}^1_{\mathbb{F}_{q^m}} \\ (x:y) & \mapsto & (ax+by:cx+dy) \end{array} \Big| \begin{cases} a,b,c,d \in \mathbb{F}_{q^m}, \\ ad-bc \neq 0 \end{cases} \Big\}.$$

Remark

The permutations of $PGL_2(\mathbb{F}_{q^m})$ have also a matrix representation, ie:

$$\forall \sigma \in \mathsf{PGL}_2(\mathbb{F}_{q^m}), \text{ we write } \sigma := \begin{pmatrix} \mathsf{a} & \mathsf{b} \\ \mathsf{c} & \mathsf{d} \end{pmatrix}, \text{ with } \mathsf{ad} - \mathsf{bc} \neq 0.$$

Where the elements a, b, c and d are defined up to a multiplication by a nonzero scalar.

Support and divisor σ -invariant

Let σ be an automorphism of $\mathbb{P}^{1}_{\mathbb{F}_{q^{m}}}$. For a point $Q \in \mathbb{P}^{1}$, we denote $Orb_{\sigma}(Q) := \{\sigma^{j}(Q) \mid j \in \{1..\ell\}\}$. We define the **support**:

$$\mathcal{P} := \prod_{i=1}^{n/\ell} Orb_{\sigma}(Q_i), \tag{1}$$

where the points $Q_i \in \mathbb{P}^1_{\mathbb{F}_{q^m}}$ are pairwise distinct with trivial stabilizer subgroup.

Support and divisor σ -invariant

Let σ be an automorphism of $\mathbb{P}^{1}_{\mathbb{F}_{q^{m}}}$. For a point $Q \in \mathbb{P}^{1}$, we denote $Orb_{\sigma}(Q) := \{\sigma^{j}(Q) \mid j \in \{1..\ell\}\}$. We define the **support**:

$$\mathcal{P} := \prod_{i=1}^{n/\ell} Orb_{\sigma}(Q_i), \tag{1}$$

where the points $Q_i \in \mathbb{P}^1_{\mathbb{F}_{q^m}}$ are pairwise distinct with trivial stabilizer subgroup. We define the divisor:

We define the **divisor**:

$$G := t \sum_{j=1}^{\ell} \sigma^j(R), \tag{2}$$

with R a point of $\mathbb{P}^{1}_{\mathbb{F}_{q^{m}}}$, $t \in \mathbb{Z}$ and deg $(G) = \ell t$.

Permutations of $\mathcal{A}_k(x, y)$

The automorphism σ of \mathbb{P}^1 induces a permutation $\tilde{\sigma}$ of $\mathcal{C} = \mathcal{C}_{\mathcal{L}}(\mathbb{P}^1, \mathcal{P}, G)$ defined by:

$$\tilde{\sigma} \colon \begin{array}{ccc} \mathcal{C} & \longrightarrow & \mathcal{C} \\ (f(P_1), \dots, f(P_n)) & \longmapsto & (f(\sigma(P_1)), \dots, f(\sigma(P_n))) \cdot \end{array}$$

Then $\tilde{\sigma}$ is also a permutation of $\mathcal{A} := \mathcal{C}^{\perp} \cap \mathbb{F}_{q}^{n}$.

Equivalence classes of $PGL_2(\mathbb{F}_{q^m})$

Lemma 3

Let $\rho \in \mathsf{PGL}_2(\mathbb{F}_{q^m})$ be an automorphism on \mathbb{P}^1 . Then $\sigma' := \rho \circ \sigma \circ \rho^{-1}$ induces the same permutation on \mathcal{C} as σ .

12 / 22

Equivalence classes of $PGL_2(\mathbb{F}_{q^m})$

Lemma 3

Let $\rho \in \mathsf{PGL}_2(\mathbb{F}_{q^m})$ be an automorphism on \mathbb{P}^1 . Then $\sigma' := \rho \circ \sigma \circ \rho^{-1}$ induces the same permutation on \mathcal{C} as σ .

Three cases are possible, depending on the eigenvalues of the matrix $M := Mat(\sigma)$:

Introduction

Quasi-cyclic Alternant Codes

- Representation of $A_k(x, y)$ as a subfield subcode of an AG code
- Induced permutations of Alternant Codes

Invariant and Folded Codes

- Definitions and properties
- The Invariant Code of $A_r(x, y)$

Let C be a linear code and $\sigma \in Perm(C)$ of order ℓ . Consider:

$$arphi \colon \mathcal{C} o \mathcal{C} \ c \mapsto \sum_{i=0}^{\ell-1} \sigma^i(c)$$

The *folded* code of C is defined by

$$\mathsf{Fold}_\sigma(\mathcal{C}) := \mathsf{Im}(arphi)$$

and the invariant code of $\ensuremath{\mathcal{C}}$ is defined by

$$\mathcal{C}^{\sigma} := \ker(\sigma - \mathsf{Id}).$$

Let C be a linear code and $\sigma \in Perm(C)$ of order ℓ . Consider:

$$arphi\colon \mathcal{C} o \mathcal{C} \ c\mapsto \sum_{i=0}^{\ell-1}\sigma^i(c)$$

The *folded* code of \mathcal{C} is defined by

$$\mathsf{Fold}_\sigma(\mathcal{C}) := \mathsf{Im}(arphi)$$

and the *invariant* code of C is defined by

$$\mathcal{C}^{\sigma} := \ker(\sigma - \mathsf{Id}).$$

Proposition 4

The codes $\operatorname{Fold}_{\sigma}(\mathcal{C})$ and \mathcal{C}^{σ} are subcodes of \mathcal{C} and:

$$\mathsf{Fold}_{\sigma}(\mathcal{C}) \subseteq \mathcal{C}^{\sigma}.$$

If Char $(\mathbb{F}_{q^m}) \nmid \ell$ then $\operatorname{Fold}_{\sigma}(\mathcal{C}) = \mathcal{C}^{\sigma}$.

If ${\mathcal C}$ is a linear code over ${\mathbb F}_{q^m},$ $\sigma\text{-invariant}$ then:

$$(\mathcal{C} \cap \mathbb{F}_q^n)^\sigma = \{ c \in \mathcal{C} \mid c \in \mathbb{F}_q^n \text{ and } \sigma(c) = c \} = \mathcal{C}^\sigma \cap \mathbb{F}_q^n.$$

15 / 22

If C is a linear code over \mathbb{F}_{q^m} , σ -invariant then:

$$(\mathcal{C} \cap \mathbb{F}_q^n)^\sigma = \{ c \in \mathcal{C} \mid c \in \mathbb{F}_q^n \text{ and } \sigma(c) = c \} = \mathcal{C}^\sigma \cap \mathbb{F}_q^n$$

Theorem 5

Let $GRS(x, y) := C_{\mathcal{L}}(\mathbb{P}^1, \mathcal{P}, G) \subseteq \mathbb{F}_{q^m}^n$ be a σ -invariant AG code, with $\sigma \in PGL_2(\mathbb{P}^1_{\mathbb{F}_{q^m}})$ of order ℓ and \mathcal{P} and G defined as (1) and (2). Then the invariant code $GRS(x, y)^{\sigma}$ is a GRS code of length n/ℓ .

Corollary 6

The invariant code $\mathcal{A}(x, y)^{\sigma}$ is an alternant code of length n/ℓ .

Lemma 7

Let $c := Ev_{\mathcal{P}}(f) \in \mathcal{C}_{\mathcal{L}}(\mathbb{P}^1, \mathcal{P}, G)$ such that $\sigma(c) = c$, then f is σ -invariant, ie: $f \circ \sigma = f$.

16 / 22

Lemma 7

Let $c := Ev_{\mathcal{P}}(f) \in \mathcal{C}_{\mathcal{L}}(\mathbb{P}^1, \mathcal{P}, G)$ such that $\sigma(c) = c$, then f is σ -invariant, ie: $f \circ \sigma = f$.

Let
$$G := t \sum_{j=1}^{\ell} \sigma^j(R)$$
, with R a rational point of $\mathbb{P}^1_{\mathbb{F}_{q^m}}$ and $t \in \mathbb{Z}$. We

denote:

$$\sigma^j(R) := (\gamma_j : \delta_j), \text{ for } j \in \{0, \ldots, \ell - 1\}.$$

Lemma 8

With the previous notation, any $f \in \mathcal{L}(G)$ can be written as:

$$f(X,Y) = rac{F(X,Y)}{\prod\limits_{j=0}^{\ell-1} (\delta_j X - \gamma_j Y)^t},$$

with $F \in \mathbb{F}_{q^m}[X, Y]$ a homogeneous polynomial of degree $t\ell$.

Case σ diagonalizable over \mathbb{F}_{q^m} :

$$\sigma: \mathbb{P}^1 \to \mathbb{P}^1 \ (X:Y) \mapsto (aX:Y),$$

with $a \in \mathbb{F}_{q^m}$. Case σ trigonalizable over \mathbb{F}_{q^m} :

$$egin{array}{rll} & & & \mathbb{P}^1 & o & & \mathbb{P}^1 \ & & & (X:Y) & \mapsto & (X+bY:Y) \end{array}$$

with $b \in \mathbb{F}_{q^m}^*$. Case σ diagonalizable over $\mathbb{F}_{q^{2m}} \setminus \mathbb{F}_{q^m}$:

1

$$\sigma: \mathbb{P}^1 \to \mathbb{P}^1 \ (X:Y) \mapsto (aX:Y),$$

with $a \in \mathbb{F}_{q^{2m}} \setminus \mathbb{F}_{q^m}$.

Case σ diagonalizable over \mathbb{F}_{q^m}

Proposition 9

If F(aX, Y) = F(X, Y), then

$$F(X,Y)=R(X^{\ell},Y^{\ell})$$

with $R \in \mathbb{F}_{q^m}[X, Y]$ an homogeneous polynomial of degree t.

18 / 22

Case σ diagonalizable over \mathbb{F}_{q^m}

Proposition 9

If F(aX, Y) = F(X, Y), then

$$F(X,Y)=R(X^{\ell},Y^{\ell})$$

with $R \in \mathbb{F}_{q^m}[X, Y]$ an homogeneous polynomial of degree t.

We denote
$$\sigma^j(P_i) := (\alpha_{i\ell+j} : \beta_{i\ell+j})$$
, for $i \in \{0, \ldots, \frac{n}{\ell} - 1\}$, $j \in \{0, \ldots, \ell - 1\}$.

Proposition 10

The code $(\mathcal{C}_{\mathcal{L}}(\mathbb{P}^{1}, \mathcal{P}, G))^{\sigma}$ is the GRS code $\mathcal{C}_{\mathcal{L}}(\mathbb{P}^{1}, \tilde{\mathcal{P}}, \tilde{G})$, with • $\tilde{P}_{i} = (\alpha_{i}^{\ell} : \beta_{i}^{\ell})$, • $\tilde{G} = t\tilde{R}$, where $\tilde{R} = ((-1)^{\ell-1} \prod_{j=0}^{\ell-1} \gamma_{j} : \prod_{j=0}^{\ell-1} \delta_{j})$.

Case σ trigonalizable over \mathbb{F}_{q^m}

Proposition 11

If
$$F(X + bY, Y) = F(X, Y)$$
, then

$$F(X,Y) = R(X^p - b^{p-1}XY^{p-1},Y^p)$$

with $R \in \mathbb{F}_q[X, Y]$ a homogeneous polynomial of degree t.

Proposition 12

The code
$$(\mathcal{C}_{\mathcal{L}}(\mathbb{P}^{1}, \mathcal{P}, G))^{\sigma}$$
 is the GRS code $\mathcal{C}_{\mathcal{L}}(\mathbb{P}^{1}, \tilde{\mathcal{P}}, \tilde{G})$, with:
• $\tilde{P}_{i} = (\alpha_{i}^{p} - b^{p-1}\alpha_{i}\beta_{i}^{p-1} : \beta_{i}^{p})$,
• $\tilde{G} = t(\tilde{R})$, where $\tilde{R} = (\prod_{j=0}^{p-1} \gamma_{j} : \prod_{j=0}^{p-1} \delta_{j})$.

Idea

We extend the code C defined on \mathbb{F}_{q^m} to the field $\mathbb{F}_{q^{2m}}$. We consider $C \otimes \mathbb{F}_{q^{2m}} := \text{Span}_{\mathbb{F}_{q^{2m}}} < C >$, we have:

$$\mathcal{C} \otimes \mathbb{F}_{q^{2m}} = \{ \mathsf{Ev}_{\mathcal{P}}(f) \mid f \in \mathcal{L}_{\mathbb{F}_{q^{2m}}}(G) \}.$$

Idea

We extend the code C defined on \mathbb{F}_{q^m} to the field $\mathbb{F}_{q^{2m}}$. We consider $C \otimes \mathbb{F}_{q^{2m}} := \text{Span}_{\mathbb{F}_{q^{2m}}} < C >$, we have:

$$\mathcal{C}\otimes \mathbb{F}_{q^{2m}} = \{\mathsf{Ev}_{\mathcal{P}}(f) \mid f \in \mathcal{L}_{\mathbb{F}_{q^{2m}}}(G)\}.$$

Idea

We extend the code C defined on \mathbb{F}_{q^m} to the field $\mathbb{F}_{q^{2m}}$. We consider $C \otimes \mathbb{F}_{q^{2m}} := \text{Span}_{\mathbb{F}_{q^{2m}}} < C >$, we have:

$$\mathcal{C}\otimes \mathbb{F}_{q^{2m}}=\{\mathsf{Ev}_{\mathcal{P}}(f)\mid f\in \mathcal{L}_{\mathbb{F}_{q^{2m}}}(G)\}.$$

$$- > C \otimes \mathbb{F}_{q^{2m}}$$
 has a base in $\mathbb{F}_{q^m}^n$.

-> Here $p \nmid \ell$ then $\operatorname{Fold}_{\sigma}(\mathcal{C}) = \mathcal{C}^{\sigma}$. So $(\mathcal{C} \otimes \mathbb{F}_{q^{2m}})^{\sigma}$ has also a base in $\mathbb{F}_{q^m}^n$.

->
$$\mathcal{C} \otimes \mathbb{F}_{q^{2m}}$$
 has a base in $\mathbb{F}_{q^m}^n$.
-> Here $p \nmid \ell$ then $\operatorname{Fold}_{\sigma}(\mathcal{C}) = \mathcal{C}^{\sigma}$. So $(\mathcal{C} \otimes \mathbb{F}_{q^{2m}})^{\sigma}$ has also a base in $\mathbb{F}_{q^m}^n$.

Conclusion

Results:

- The invariant code of a quasi-cyclic GRS code is a GRS code.
- The security of alternant codes with induced permutation from the projective linear group, is reduced to the security of the invariant code which is an alternant code.

Conclusion

Results:

- The invariant code of a quasi-cyclic GRS code is a GRS code.
- The security of alternant codes with induced permutation from the projective linear group, is reduced to the security of the invariant code which is an alternant code.

Works in progress:

- Security of AG codes on cyclic cover of the projective line.
- Security of AG codes on cyclic covers of plane curves of genus > 0.

Thank you!