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Divide and Conquer Strategy: 

Retrieve a small enough part of the secret key (subkey) at time 

(small enough = possible to enumerate all hypotheses)

SIDE-CHANNEL ATTACKS: TARGET

Example [AES-128]: key of 16 bytes, retrieve each byte of 

the key independently

Example [AES-128]: 𝑍 = 𝑆(𝑃 ⊕𝐾), 
being P a byte of plaintext, K a byte of key and S the 

SubByte operation (first round)

Target: Sensitive Variable

A variable 𝑍 ∈ Z = {𝑧1, 𝑧2, … 𝑧 Z } handled during the encryption algorithm, 
and which depends on a subkey
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SIDE-CHANNEL TRACES AND ANALYSIS

Encryption

(Key)

…+*%...

…+-/*%…
𝑍 = 𝑆(𝑃 ⊕ 𝐾)

…%+*...

…+-/*%…

𝑋 ∈ Noisy signal
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Encryption

(Key)

…+*%...

…+-/*%…
𝑍 = 𝑆(𝑃 ⊕ 𝐾)

…%+*...

…+-/*%… Make inference about Z

Estimate Pr[𝑍|𝑋]

𝑋 ∈ Noisy signal

• Collect attack traces 𝑥1, 𝑥2, … , 𝑥𝑁′
(plaintexts 𝑃1, 𝑃2, … , 𝑃𝑁′)

• Make hypotheses 𝑘1, 𝑘2, … , 𝑘256

• Use Bayes theorem:  Pr 𝑍 𝑋 =
Pr 𝑋 𝑍 Pr[𝑋]

Pr[𝑍]

• 𝑆𝑐𝑜𝑟𝑒𝑘𝑖 = Pr 𝑍 = 𝑆 𝑝𝑛⊕𝑘𝑖 𝑥𝑛, 𝑝𝑛 𝑛=1
𝑁′ , 𝑘𝑖

Attack

phase

• Collect a profiling set 𝑥𝑖 , 𝑧𝑖 𝑖=1,..,𝑁
• Estimate the templates 𝑃𝑟 𝑋 𝑍

(Pr 𝑋 , Pr 𝑍 )

Profiling

phase
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DIMENSIONALITY REDUCTION

Problem (curse of dimensionality): D might be huge! X 

is strongly multivariate, estimate Pr[𝑋|𝑍] is complexe

Solution:
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DIMENSIONALITY REDUCTION

Problem (curse of dimensionality): D might be huge! X 

is strongly multivariate, estimate Pr[𝑋|𝑍] is complexe

Solution:
• Gaussian Hypothesis

(only estimate means and covariance 

matrices)
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Problem (curse of dimensionality): D might be huge! X 

is strongly multivariate, estimate Pr[𝑋|𝑍] is complexe

Solution:
• Gaussian Hypothesis

(only estimate means and covariance 

matrices)

• Dimensionality Reduction

o Select a few Points of Interest

(via some statistical tests)

o Dimensionality Reduction

techniques (e.g. PCA)

Points of Interest: coordinates

of X which depend on Z
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DIMENSIONALITY REDUCTION

Problem (curse of dimensionality): D might be huge! X 

is strongly multivariate, estimate Pr[𝑋|𝑍] is complexe

Solution:
• Gaussian Hypothesis

(only estimate means and covariance 

matrices)

• Dimensionality Reduction

o Select a few Points of Interest

(via some statistical tests)

o Dimensionality Reduction

techniques (e.g. PCA)

Points of Interest: coordinates

of X which depend on Z

But: Approaches highly affected by geometrical deformations of the signals

(e.g. delays, unstable clock frequency,…) causing trace misalignment
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MISALIGNMENT

10 Aligned traces
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MISALIGNMENT

10 Aligned traces

10 Misaligned traces (unstable clock frequency)
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STATE OF THE ART (1)
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Template attacks
• Chari et al. " Template attacks." CHES, 2002

• Choudary and Kuhn. " Efficient template attacks." CARDIS, 2014

Dimensionality Reduction
• Standaert and Archambeau. " Using subspace-based template attacks to compare and combine 

power and electromagnetic information leakages." CHES, 2008

• Batina et al. " Getting more from PCA: First results of using principal component analysis for 

extensive power analysis." CT-RSA, 2012

• Cagli et al. " Kernel Discriminant Analysis for information extraction in the presence of masking." 

CARDIS, 2016

Realignment Techniques
• Nagashima et al. " DPA using phase-based waveform matching against random-delay 

countermeasure." ISCAS, 2007

• van Woudenberg et al. " Improving differential power analysis by elastic alignment. " CT-RSA, 2011
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STATE OF THE ART (2)

Machine Learning
• Bartkewitz and Lemke-Rust. " Efficient template attacks based on probabilistic multi-class Support 

Vector Machines" CARDIS, 2013

• Hospodar et al. " Machine learning in side-channel analysis: a first study« Journal of 

Cryptographic Engineering, 2013

• Lerman et al. " Power analysis attack: an approach based on machine learning" International 

Journal of Applied Cryptography, 2014

• Whitnall and Oswald. " Robust Profiling for DPA-Style Attacks" CHES, 2015

• Maghrebi et al. " Breaking Cryptographic Implementations Using Deep Learning Techniques" 

SPACE, 2016
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CLASSIFICATION WITH NEURAL NETWORK -

INTRODUCTION

0% 10% 20% 30% 40% 50% 60%

Classification

Horse Dog Cat

Classification: Assign to a 

datum 𝑋 (e.g. an image) a label 𝑍
among a set of possible labels

Z = {𝐻𝑜𝑟𝑠𝑒, 𝐷𝑜𝑔, 𝐶𝑎𝑡}
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CLASSIFICATION WITH NEURAL NETWORKS

F x,W = 𝑠 ∘ 𝜆𝑛 ∘ 𝜎𝑛−1 ∘ 𝜆𝑛−1 ∘ ⋯ ∘ 𝜆1 𝑥 = 𝑦 ≈ Pr[𝑍|𝑋 = 𝑥]
• 𝜆𝑖 affine functions (𝜆𝑖 𝑥 = 𝐴𝑥 + 𝑏) depending on some parameters W (weights)

• 𝜎𝑖 non-linear functions (activation functions)

• 𝑠 softmax function 𝑠 𝑥 𝑖 =
𝑒𝑥[𝑖]

 𝑗 𝑒
𝑥[𝑗]

• The weights W are trained on the basis of a training set 𝑥𝑖 , 𝑧𝑖 𝑖=1,..,𝑁, by minimizing

the loss function

𝐿 𝑊, 𝑥𝑖 , 𝑧𝑖 =
1

𝑁
 𝑖=1
𝑁 𝐷(𝐹 𝑥𝑖 ,𝑊 , 𝐼 𝑧𝑖 )

where 𝐼 𝑧𝑖 = 0,0,…0,1,0, … 0 = 𝑓𝑍|𝑍=𝑧𝑖 (probability distribution of 𝑍|𝑍 = 𝑧𝑖)

and 𝐷 𝑓𝑋, 𝑓𝑌 = − 𝑧 fY(z)log(𝑓𝑋 𝑧 ) is the cross-entropy between two probability distributions 

𝑓𝑋 , 𝑓𝑌 (over the same probability space)
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CONVOLUTIONAL NEURAL NETWORKS
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How to take shift-invariance into account? Sharing weights
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CONVOLUTIONAL NEURAL NETWORKS

0% 10% 20% 30% 40% 50% 60%

Classification

Horse Dog Cat

How to take shift-invariance into account? Sharing weights
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Convolutional Layer Max-Pooling Layer
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CONVOLUTIONAL NEURAL NETWORKS – LAYERS AND 

ARCHITECTURE

Common Architecture

Journées C2| Eleonora Cagli | 24.04.2017

ConvNet scheme from www.wildml.com
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• The more weights, the more flexible the network is (able to better fit the 

training data)

• BUT: overfitting phenomenon

OVERFITTING

Example of overfitting for a 

regression problem

Solutions:
1) More data

2) A more constrained network 

(less parameters)

3) Regularization or Data 

Augmentation
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DATA AUGMENTATION

Generate artificially new training data by deforming those previously acquired,

Applying transformations that preserve the label 𝑍

𝑍 = 𝐷𝑜𝑔 𝑍 = 𝐷𝑜𝑔 𝑍 = 𝐷𝑜𝑔

Original Datum Augmented Data

𝑍 = 𝐷𝑜𝑔

Deformation techniques for images
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DATA AUGMENTATION

Generate artificially new training data by deforming those previously acquired,

Applying transformations that preserve the label 𝑍

Add-Remove Deformation

Shifting Deformation

Deformation techniques for side-channel traces
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EXPERIMENTAL RESULTS

Slide 7

• 𝑍 = 𝑆 𝑃⊕𝐾
• Aligned case: Gaussian and CNN approach

same performances 

(~5 traces for success)

• Misaligned case:

• For Gaussian approach a wide range of 

PoI selections has been tried

• CNN architecture:

where 𝛾 are convolutional layers and 𝛿
are poolings

• Data Augmentation is done composing

AR and SH deformations

𝐹 𝑥 = 𝑠 ∘ λ ∘ 𝛿4 ∘ 𝜎4 ∘ 𝛾4 ∘ 𝛿3 ∘ 𝜎3 ∘ 𝛾3 ∘ 𝛿2 ∘ 𝜎2 ∘ 𝛾2 ∘ 𝛿1 ∘ 𝜎1 ∘ 𝛾1
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CONCLUSIONS
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CONCLUSIONS
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THANK YOU! ANY QUESTIONS? 

Template attacks issues

Analogy between SCA and classification

Analogy between geometrical deformation and misalignment

Convolutional Neural Networks
• Robust to geometrical deformations

• Not affected by curse of dimensionality

Data Augmentation

Dimensionality Misalignment Bounded number of acquisitions

Will CNN take the place of Gaussian TA?


