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@ Generic problem is believed to be hard on average.
@ Central for security of code-based cryptography.

@ For the binary case, the first important algorithm (ISD) was
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Computational Syndrome Decoding

Let He By %" s e Tk, w > 0.
Find e € F, wt(e) < w, He =s.

@ Generic problem is believed to be hard on average.
@ Central for security of code-based cryptography.

@ For the binary case, the first important algorithm (ISD) was
proposed by Prange in 1962 and the last one by May and
Ozerov in 2015.

@ For the g-ary case, the first generalisation was done by Peters

in 2010 and the last one by Gueye, Klamti and Hirose in 2017.

(ISD = Information Set Decoding)
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Conventional Complexity of known algorithms

Asymptotic analysis

Let R = k/n (code rate), 7 = w/n (error rate) such that
0<7< h;l(l — R). So, for an algorithm A we can express its
work factor of solving CSD(n, Rn,Tn) as

WEFEa(n,Rn,7n, q) = o¢'n(1-+0(1))

where ¢ is a constant which depends on R, 7, A and gq.
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In this Work

For many variants A of ISD, if R and 7 are constants then

lim WF 4(n, Rn,7n, q) = WFprange(n, Rn, 7n).

g—c0
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© Introduction

© Generic Decoding Algorithms
@ Decoding by Birthday Paradox
@ Prange's Algorithm
@ Information Set Decoding Algorithms
@ Stern-Dumer’s Algorithm
@ Mae, May and Thomae's Algorithm

9 Asymptotic Analysis over the field size

O Results
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@ We produce one indexed list

L = {(He,e),e € Fg,wt(e)
@ We look for (s,e) € L

@ The cost is
n
—_ 1w
(W>(q )

=w}
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Decoding by Birthday Paradox
Prange’s Algorithm

Information Set Decoding Algorithms
Stern-Dumer’s Algorithm

Mae, May and Thomae's Algorithm

Description

We divide the problem in half :
o H=[Hi|Ha], Hy, Hy € B 72
o e=[el]e], e1, e € F3

We produce two list:

L1 ={(Hier,e1),e1 €F2}, Lo={(s — Hes, &), € F2}

We have: He=s — Hies=s5— Hye;.

Produce £ — Produce L1, L5,L£1 X Lo

o & = = 9ace
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Hy H,
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|H1e1 =5 — H2e2?|
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@ Total Cost: 2 (

n/2

w/2)(q _ 1)w/2 + (n/2
@ Probability of succes:

(e’ ey’
o We-yr

()

2)%(q - 1) /q"
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Decoding by Birthday Paradox
Prange’s Algorithm

Information Set Decoding Algorithms
Stern-Dumer’s Algorithm

Mae, May and Thomae's Algorithm

Description

@ Choose randomly a matrix P; € ng”

e Find matrices P, and U s.t. H' = UHP1P> = (Id,—«|Q)
So, we obtain

He =s — e+ Qe =5
If the first n — k entries of e’ were a Information Set, e, = 0.

CSD(H, s, w) = Test wt(s') = w

DA
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@ Cost of the permutation and diagonalization is polynomial
@ Probability de succes:

(") (a-1)"
(m)(g—=1)w
® WFpa(n, k,w) = (S"_"I’Z)
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Decoding by Birthday Paradox
Prange’s Algorithm

Information Set Decoding Algorithms
Stern-Dumer’s Algorithm

Mae, May and Thomae's Algorithm

Description 1

@ Choose randomly a matrix Py € Fg*"
@ Find matrices P, and U such that

Idy k-t Qun—k—r
H' = UHP,P; = (k=0
v { 0 Qu

e We divide the error e = [e(,_k—¢), €[k+4]-
e We divide the syndrome s = [s(,_x_¢), Sg]-
Then

He — s — J Quacikea = sig
€(n—k—t) = S(n—k—t) — Q(n—k—£)E[k+1]

o F
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Then

He — s —> { Qe = 5

E(n—k—t) = S(n—k—t) — Qn—k—0)€[k+(]
If we divide the weight w = p+ (w — p):

CSD(H, s, w) = { CSD(Qyg 519, P)

Test Wt(S(n_k_g) - Q(n_k—e)e[k+tz]) =w-=p

Dae
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Solve CSD(Qg; Sig: P> 9)
Wt(S(,,_k_g) — Q(n_k—Z)e[kJre]) =w?

«O0>» «F»r «Z» <

Dae
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Prange’s Algorithm

Information Set Decoding Algorithms
Stern-Dumer’s Algorithm

Mae, May and Thomae’s Algorithm

Example: Stern-Dumer’s Algorithm

Introduction
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Results

We solve CSD(Qyy, sjq, p) by the Birthday Decoding
@ The cost of solving CSD( Qg Sig1: P):

(Y@= (T -

@ Probability of succes is

n—k—0y ((k+£)/2)2 n—k—
( Wfpé) (( ;_/%/ ) ( wﬁpf) (k,je)

() ()

P =

~

@ WFsp_1sp =

minj ¢ {7’1 < (39 @=1P2+ (9 (a - 1)”/qf> }
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@ ColumnMatch:

@ New sub-procedure for CSD(Qyq, si¢, p): ColumnMatch

Quer = s — Qe

Y
e=ea+te, e,aclk,
where the supports of e, e can have intersection.
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wt(e) =
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Decoding by Birthday Paradox
Prange’s Algorithm

Information Set Decoding Algorithms
Stern-Dumer’s Algorithm

Mae, May and Thomae's Algorithm

Probability p; ® p1 = p

For p, p1 fixed:

E)CEN ) 1 \2g—2\a
Heiene = ) (q - 1) <q - 1>
p1

So, for e =0,1,...,p1 — p/2

Lhe, = (g) (2p1pi;i2252) ( N,
€y —

p1 q_l

The total probability p1 & p1=p: p= Z”ﬁz'

€2

5 b prte) (( ;_—21)2>€2 (q - 2)2P1—P
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Prange’s Algorithm

Stern-Dumer’s Algorithm

Number of representations py ® p; = p

Decoding by Birthday Paradox

Information Set Decoding Algorithms

Mae, May and Thomae's Algorithm

For p, p1 fixed:

2p; + €1 2p1\ [k +¢—2p] —
Ppler,es = ( 161 )(q_2)81 ( p/l !

1 €2

We can prove
( P ) 2p1—p
psz - st . 0 (q 1) '

(")

The total number of representations p1 & p1 = p

(k+f)2

pP= Zpsz = ;f_li_g (q - 1)2p1—p
€2 ( P )

o =

)(q—l)s2
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Decoding by Birthday Paradox
Prange’s Algorithm

Information Set Decoding Algorithms
Stern-Dumer’s Algorithm

Mae, May and Thomae's Algorithm

@ We PRODUCE with Birthday decoding:
L1 = {(Qe1, e1), e1 solution CSD(Qy, 0, p1)}
Ly = {(s — Qqe2, &2), &2 solution CSD(Qq; 5[5 P1)}

e We calcule £1 x L to solve CSD(Qyq, sig, P)

CSD(Qq, 0, p1), CSD( Q1 S5 P1),
CSD(H, S, W) — { CSD(Q[e], [ p)

Test Wt(S(,,_k_g) - Q(n—k—Z)e[kH]) =w-p
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Decoding by Birthday Paradox
Prange’s Algorithm

Information Set Decoding Algorithms
Stern-Dumer’s Algorithm

Mae, May and Thomae's Algorithm

@ We divide the size L1, £, by a factor p, so we have to do
r= |qu(p)

@ La probability of succes P is the same as SD-ISD.
So,

WEMMT—1SD = p','}fﬂl {P—1< (k; Z)(q _ 1 (k +£) (g—1)» n (k +£) (g— 1)P) )

p1 p p q‘n )

Do
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We give a lower bound for the SD-ISD and MMT-ISD algorithms.

Lemma

For sufficiently large values of n and k, we have

() (=10 (g—1)
WEF ,k,w, > v )
A(n, k,w,q) rgv'? (";V:Z) (ka;f) + q°

where a is equals to 1/2 and 3/4, when A is SD-ISD and
MMT-ISD.

23/37



Introduction

Generic Decoding Algorithms
Asymptotic Analysis over the field size
Results

We asociate this bound to the function

" —1)(1-a)p _ 1)\
Ba,q(& P) = nEVZ)_Z) <(q (:_f)_g) + (q qgl) )

W5

n—k

For w <

5, there is £*, p* such that

. [kt .
min B, 4(¢, p) = Bag(£*,p*) and ¢ =< - >(q—1)ap
Lp ap*
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We obtain the following inequalitiy

If-ap*lSlog(<k;25*))/logﬁn-

So, £ — ap™ when g — co. Moreover,

WFpra_1sp > WE 4 > ¢(1=2P")

(w)

Therefore,

(g —1)*
(n—k—é*

w—p* ) qe*

lim ¢ = lim p* =0.
g—00

q—00

Do
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Main Result

Theorem

For all A among the g-ary version of SD-ISD, MMT-ISD and
BJMM-NN-ISD?, code rate R and error rate 7 < h™1(1 — R), we
have

lim WF 4(n, Rn,7n,q) = WFpa_1sp(n, Rn, 7n).

g—00

?In march 2017, binary BJMM algorithm was extented to g-ary case by
using the g — ary nearest neighbor technique
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Numerical Results

Pra-I1SD SD-ISD MMT-ISD

c c ¢/n p/n c ¢/n p/n

0.1826 | 0.1773 | 0.0291 | 0.0119 | 0.1631 | 0.0471 | 0.0287

| WwQ

0.3084 | 0.3038 | 0.0507 | 0.0327 | 0.2903 | 0.0162 | 0.0099

64 | 0.4875 | 0.4861 | 0.0033 | 0.0027 | 0.4832 | 0.0118 | 0.0072

128 | 0.5286 | 0.5278 | 0.0018 | 0.0015 | 0.5262 | 0.0060 | 0.0035

256 | 0.5633 | 0.5628 | 0.0010 | 0.0008 | 0.5620 | 0.0030 | 0.0017

Table 1: Values in code rate R = 0.45 and error rate 7 = hy (1 — R)
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Figure 1: R, 7 = h;l(l —R)vsc

(g=3)
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Figure 3: R,7 = h ' (1 - R) vs

o3

(g =64)
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Figure 4: R,7 = h;'(1—R)vs ¢ (g = 128)
«O» «F»r « = «E>» =3




Figure 5: R,7 = h;}(1 - R) vs ¢

(q = 256)
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Figure 6: R, 7 =h;'(1-R)vsc (q=3)
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Figure 7: R, 7 = h51(1 Ry
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Figure 8: R,7 = h ' (1 - R) vs ¢
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Figure 9: R,7 = h;}(1 - R) vs ¢

(q = 128)
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Figure 10: R,7 = h;'(1—=R) vs c

(g = 256)
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