# Asymptotic Analysis of ISD algorithms for the *q*-ary case

Rodolfo Canto Torres

27 April 2017



イロト 不同下 イヨト イヨト

1/37

# **Computational Syndrome Decoding**

#### $\overline{\mathsf{CSD}}(H, s, w)$

Let 
$$H \in \mathbb{F}_q^{(n-k) \times n}$$
,  $s \in \mathbb{F}_q^{n-k}$ ,  $w \ge 0$ .  
Find  $e \in \mathbb{F}_q^n$ ,  $\operatorname{wt}(e) \le w$ ,  $He = s$ .

## **Computational Syndrome Decoding**

#### CSD(H, s, w)

Let 
$$H \in \mathbb{F}_q^{(n-k) \times n}$$
,  $s \in \mathbb{F}_q^{n-k}$ ,  $w \ge 0$ .  
Find  $e \in \mathbb{F}_q^n$ ,  $\operatorname{wt}(e) \le w$ ,  $He = s$ .

- Generic problem is believed to be hard on average.
- Central for security of code-based cryptography.
- For the binary case, the first important algorithm (ISD) was proposed by Prange in 1962 and the last one by May and Ozerov in 2015.

# **Computational Syndrome Decoding**

#### CSD(H, s, w)

Let 
$$H \in \mathbb{F}_q^{(n-k) \times n}$$
,  $s \in \mathbb{F}_q^{n-k}$ ,  $w \ge 0$ .  
Find  $e \in \mathbb{F}_q^n$ ,  $\operatorname{wt}(e) \le w$ ,  $He = s$ .

- Generic problem is believed to be hard on average.
- Central for security of code-based cryptography.
- For the binary case, the first important algorithm (ISD) was proposed by Prange in 1962 and the last one by May and Ozerov in 2015.
- For the q-ary case, the first generalisation was done by Peters in 2010 and the last one by Gueye, Klamti and Hirose in 2017. (ISD = Information Set Decoding)

### **Conventional Complexity of known algorithms**

#### Asymptotic analysis

Let R = k/n (code rate),  $\tau = w/n$  (error rate) such that  $0 \le \tau \le h_q^{-1}(1-R)$ . So, for an algorithm  $\mathcal{A}$  we can express its work factor of solving  $\text{CSD}(n, Rn, \tau n)$  as

$$WF_{\mathcal{A}}(n, Rn, \tau n, q) = 2^{c'n(1+o(1))}$$

where c is a constant which depends on R,  $\tau$ , A and q.

### In this Work

#### Main Aim

For many variants  $\mathcal A$  of ISD, if R and au are constants then

$$\lim_{q\to\infty} \mathrm{WF}_{\mathcal{A}}(n, Rn, \tau n, q) = \mathrm{WF}_{\mathrm{Prange}}(n, Rn, \tau n).$$

#### Introduction

#### **2** Generic Decoding Algorithms

- Decoding by Birthday Paradox
- Prange's Algorithm
- Information Set Decoding Algorithms
- Stern-Dumer's Algorithm
- Mae, May and Thomae's Algorithm

#### **3** Asymptotic Analysis over the field size

#### 4 Results

Decoding by Birthday Paradox Prange's Algorithm Information Set Decoding Algorithms Stern-Dumer's Algorithm Mae, May and Thomae's Algorithm

6/37

# **Decoding by Force Brute**

• We produce one indexed list

$$\mathcal{L} = \{(He, e), e \in \mathbb{F}_q^n, \operatorname{wt}(e) = w\}$$

• We look for 
$$(s, e) \in \mathcal{L}$$

The cost is

$$\binom{n}{w}(q-1)^w$$

# Description

Decoding by Birthday Paradox Prange's Algorithm Information Set Decoding Algorithms Stern-Dumer's Algorithm Mae. May and Thomae's Algorithm

We divide the problem in half :

•  $H = [H_1|H_2], H_1, H_2 \in \mathbb{F}_q^{(n-k) \times \frac{n}{2}}$ •  $e = [e_1|e_2], e_1, e_2 \in \mathbb{F}_q^{\frac{n}{2}}$ 

We produce two list:

$$\mathcal{L}_1 = \{(\mathcal{H}_1 e_1, e_1), e_1 \in \mathbb{F}_q^{rac{n}{2}}\}, \ \mathcal{L}_2 = \{(s - \mathcal{H}_2 e_2, e_2), e_2 \in \mathbb{F}_q^{rac{n}{2}}\}$$

We have:  $He = s \implies H_1e_s = s - H_2e_2$ .

 $\mathsf{Produce}\ \mathcal{L} \qquad \Longrightarrow \qquad \mathsf{Produce}\ \mathcal{L}_1, \mathcal{L}_2, \mathcal{L}_1 \bowtie \mathcal{L}_2$ 

#### **Decoding by Birthday Paradox**

Prange's Algorithm Information Set Decoding Algorithms Stern-Dumer's Algorithm Mae, May and Thomae's Algorithm

### **Scheme**



$$\begin{bmatrix} 0 & e_1 & 0 & 0 & e_2 & 0 \end{bmatrix}^t$$

٠

$$H_1e_1=s-H_2e_2?$$

#### **Decoding by Birthday Paradox**

Prange's Algorithm Information Set Decoding Algorithms Stern-Dumer's Algorithm Mae, May and Thomae's Algorithm

#### Cost

• Total Cost: 
$$2 * {n/2 \choose w/2} (q-1)^{w/2} + {n/2 \choose w/2}^2 (q-1)^w / q^{n-k}$$

• Probability of succes:

$$\mathcal{P} = rac{\left( \binom{n/2}{w/2} (q-1)^{w/2} 
ight)^2}{\binom{n}{w} (q-1)^w} = rac{\binom{n/2}{w/2}^2}{\binom{n}{w}}$$

Decoding by Birthday Paradox Prange's Algorithm Information Set Decoding Algorithms Stern-Dumer's Algorithm Mae, May and Thomae's Algorithm

# Description

- Choose randomly a matrix  $P_1 \in \mathbb{F}_q^{n \times n}$
- Find matrices  $P_2$  and U s.t.  $H' = UHP_1P_2 = (Id_{n-k}|Q)$

So, we obtain

$$He = s \implies e'_{n-k} + Qe'_k = s'$$

If the first n - k entries of e' were a *Information Set*,  $e'_k = 0$ .

 $\mathsf{CSD}(H, s, w) \implies \mathsf{Test } \mathrm{wt}(s') = w$ 

Decoding by Birthday Paradox Prange's Algorithm Information Set Decoding Algorithms Stem-Dumer's Algorithm Mae, May and Thomae's Algorithm

### **Scheme**



Decoding by Birthday Paradox Prange's Algorithm Information Set Decoding Algorithms Stern-Dumer's Algorithm Mae, May and Thomae's Algorithm

イロン イヨン イヨン イヨン

3

12/37

# Work factor

- Cost of the permutation and diagonalization is polynomial
- Probability de succes:

$$rac{\binom{n-k}{w}(q-1)^w}{\binom{n}{w}(q-1)^w}$$

• WF<sub>Pra</sub>
$$(n, k, w) = \frac{\binom{n}{w}}{\binom{n-k}{w}}$$

Decoding by Birthday Paradox Prange's Algorithm Information Set Decoding Algorithms Stem-Dumer's Algorithm Mae, May and Thomae's Algorithm

# **Description 1**

- Choose randomly a matrix  $P_1 \in \mathbb{F}_q^{n imes n}$
- Find matrices  $P_2$  and U such that

$$H' = UHP_1P_2 = \begin{bmatrix} \mathrm{Id}_{n-k-\ell} & Q_{(n-k-\ell)} \\ 0 & Q_{[\ell]} \end{bmatrix}$$

- We divide the error  $e = [e_{(n-k-\ell)}, e_{[k+\ell]}].$
- We divide the syndrome  $s = [s_{(n-k-\ell)}, s_{[\ell]}]$ .

Then

$$He = s \Longrightarrow \begin{cases} Q_{[\ell]}e_{[k+\ell]} = s_{[\ell]} \\ e_{(n-k-\ell)} = s_{(n-k-\ell)} - Q_{(n-k-\ell)}e_{[k+\ell]} \end{cases}$$

Decoding by Birthday Paradox Prange's Algorithm Information Set Decoding Algorithms Stem-Dumer's Algorithm Mae, May and Thomae's Algorithm

### **Description 2**

#### Then

$$He = s \Longrightarrow \begin{cases} Q_{[\ell]}e_{[k+\ell]} = s_{[\ell]} \\ e_{(n-k-\ell)} = s_{(n-k-\ell)} - Q_{(n-k-\ell)}e_{[k+\ell]} \end{cases}$$

If we divide the weight w = p + (w - p):

$$\operatorname{CSD}(H, s, w) \Longrightarrow \begin{cases} \operatorname{CSD}(Q_{[\ell]}, s_{[\ell]}, p) \\ \operatorname{Test } \operatorname{wt}(s_{(n-k-\ell)} - Q_{(n-k-\ell)}e_{[k+\ell]}) = w - p \end{cases}$$

・ロ ・ ・ 日 ・ ・ 目 ・ 日 ・ 日 ・ 14/37

Decoding by Birthday Paradox Prange's Algorithm Information Set Decoding Algorithms Stern-Dumer's Algorithm Mae, May and Thomae's Algorithm

#### **Scheme**





•

$$\boxed{\begin{array}{c} \text{Solve CSD}(Q_{[\ell]}, s_{[\ell]}, p, q) \\ \text{wt}(s_{(n-k-\ell)} - Q_{(n-k-\ell)}e_{[k+\ell]}) = w? \end{array}}$$

15/37

э

<ロ> <同> <同> < 回> < 回>

Decoding by Birthday Paradox Prange's Algorithm Information Set Decoding Algorithms Stern-Dumer's Algorithm Mae, May and Thomae's Algorithm

# **Example: Stern-Dumer's Algorithm**

We solve CSD(Q<sub>[l]</sub>, s<sub>[l]</sub>, p) by the Birthday Decoding
The cost of solving CSD(Q<sub>[l]</sub>, s<sub>[l]</sub>, p):

$$\sqrt{\binom{k+\ell}{p}}(q-1)^{p/2}+\binom{k+\ell}{p}(q-1)^p/q^\ell$$

• Probability of succes is

$$\mathcal{P} = \frac{\binom{n-k-\ell}{w-p}\binom{(k+\ell)/2}{p/2}^2}{\binom{n}{w}} \approx \frac{\binom{n-k-\ell}{w-p}\binom{k+\ell}{p}}{\binom{n}{w}}$$

• WF<sub>SD-ISD</sub> =  

$$\min_{p,\ell} \left\{ \mathcal{P}^{-1}\left( \sqrt{\binom{k+\ell}{p}} (q-1)^{p/2} + \binom{k+\ell}{p} (q-1)^p / q^\ell \right) \right\}_{\substack{q \in \mathcal{P} \\ 16/37}}$$

Decoding by Birthday Paradox Prange's Algorithm Information Set Decoding Algorithms Stern-Dumer's Algorithm Mae, May and Thomae's Algorithm

# **Description 1**

- New sub-procedure for CSD( $Q_{[\ell]}, s_{[\ell]}, p$ ): ColumnMatch
- ColumnMatch:

$$egin{aligned} Q_{[\ell]} e_1 = s - Q_{[\ell]} e_2, \qquad e = e_1 + e_2, \quad e_1, e_2 \in \mathbb{F}_q^\ell \end{aligned}$$

where the supports of  $e_1$ ,  $e_2$  can have intersection.

Decoding by Birthday Paradox Prange's Algorithm Information Set Decoding Algorithms Stern-Dumer's Algorithm Mae, May and Thomae's Algorithm

#### **Description 2**



$$wt(e_1) = wt(e_2) = p_1 = p'_1 + \varepsilon_1 + \varepsilon_2$$
$$wt(e) = p = 2p'_1 + \varepsilon_1$$

Decoding by Birthday Paradox Prange's Algorithm Information Set Decoding Algorithms Stern-Dumer's Algorithm Mae, May and Thomae's Algorithm

# **Probability** $p_1 \oplus p_1 = p$

#### For $p, p_1$ fixed:

$$\mu_{p_1',\varepsilon_1,\varepsilon_2} = \frac{\binom{p_1}{\varepsilon_2}\binom{p_1'+\varepsilon_1}{\varepsilon_1}\binom{k+\ell-p_1}{p_1'}}{\binom{k+\ell}{p_1}} \Big(\frac{1}{q-1}\Big)^{\varepsilon_2} \Big(\frac{q-2}{q-1}\Big)^{\varepsilon_1}$$

So, for  $arepsilon_2=0,1,\ldots,p_1-p/2$ 

$$\mu_{\varepsilon_2} = \frac{\binom{p_1}{\varepsilon_2}\binom{p_1-\varepsilon_2}{2p_1-p-2\varepsilon_2}\binom{k+\ell-p_1}{p-p_1+\varepsilon_2}}{\binom{k+\ell}{p_1}} \left(\frac{q-1}{(q-2)^2}\right)^{\varepsilon_2} \left(\frac{q-2}{q-1}\right)^{2p_1-p}$$

The total probability  $p_1\oplus p_1=p$  :  $\mu=\sum_{arepsilon_2}\mu_{arepsilon_2}.$ 

Decoding by Birthday Paradox Prange's Algorithm Information Set Decoding Algorithms Stern-Dumer's Algorithm Mae, May and Thomae's Algorithm

Number of representations  $p_1 \oplus p_1 = p$ 

For  $p, p_1$  fixed:

$$\rho_{p_1',\varepsilon_1,\varepsilon_2} = \binom{2p_1'+\varepsilon_1}{\varepsilon_1} (q-2)^{\varepsilon_1} \binom{2p_1'}{p_1'} \binom{k+\ell-2p_1'-\varepsilon_1}{\varepsilon_2} (q-1)^{\varepsilon_2}$$

We can prove

$$\rho_{\varepsilon_2} = \mu_{\varepsilon_2} \frac{\binom{k+\ell}{p_1}^2}{\binom{k+\ell}{p}} (q-1)^{2p_1-p}$$

The total number of representations  $p_1 \oplus p_1 = p$ 

$$\rho = \sum_{\varepsilon_2} \rho_{\varepsilon_2} = \mu \frac{\binom{k+\ell}{p_1}^2}{\binom{k+\ell}{p}} (q-1)^{2p_1-p_2}$$

20/37

3

(日) (同) (三) (三)

• We **PRODUCE** with Birthday decoding:

$$\mathcal{L}_1 = \{(Q_{[\ell]}e_1, e_1), e_1 \text{ solution } \mathsf{CSD}(Q_{[r]}, 0, p_1)\}$$

$$\mathcal{L}_2 = \{(s - Q_{[\ell]}e_2, e_2), e_2 \text{ solution } \mathsf{CSD}(Q_{[r]}, s_{[r]}, p_1)\}$$

• We calcule  $\mathcal{L}_1 \bowtie \mathcal{L}_2$  to solve  $\mathrm{CSD}(Q_{[\ell]}, s_{[\ell]}, p)$ 

$$\operatorname{CSD}(H, s, w) \Longrightarrow \begin{cases} \operatorname{CSD}(Q_{[r]}, 0, p_1), \operatorname{CSD}(Q_{[r]}, s_{[r]}, p_1), \\ \operatorname{CSD}(Q_{[\ell]}, s_{[\ell]}, p) \\ \operatorname{Test } \operatorname{wt}(s_{(n-k-\ell)} - Q_{(n-k-\ell)}e_{[k+\ell]}) = w - p \end{cases}$$

- We divide the size  $\mathcal{L}_1$ ,  $\mathcal{L}_2$  by a factor  $\rho$ , so we have to do  $r = \log_q(\rho)$ .
- $\bullet$  La probability of succes  ${\cal P}$  is the same as SD-ISD.

#### So,

$$WF_{MMT-ISD} = \min_{\rho,\ell,p_1} \left\{ \mathcal{P}^{-1} \left( \sqrt{\binom{k+\ell}{p_1} (q-1)^{p_1}} + \binom{k+\ell}{p_1} \frac{(q-1)^{p_1}}{\rho} + \binom{k+\ell}{p} \frac{(q-1)^p}{q^\ell \mu} \right) \right\}$$

#### We give a lower bound for the SD-ISD and MMT-ISD algorithms.

#### Lemma

For sufficiently large values of n and k, we have

$$\operatorname{WF}_{\mathcal{A}}(n,k,w,q) \geq \min_{p,\ell} \frac{\binom{n}{w}}{\binom{n-k-\ell}{w-p}} \left( \frac{(q-1)^{(1-a)p}}{\binom{k+\ell}{ap}} + \frac{(q-1)^p}{q^\ell} \right),$$

where a is equals to 1/2 and 3/4, when  $\mathcal{A}$  is SD-ISD and MMT-ISD.

#### We asociate this bound to the function

$$B_{a,q}(\ell,p) = \frac{\binom{n}{w}}{\binom{n-k-\ell}{w-p}} \left( \frac{(q-1)^{(1-a)p}}{\binom{k+\ell}{ap}} + \frac{(q-1)^p}{q^\ell} \right).$$

#### Lemma

For 
$$w < \frac{n-k}{2}$$
, there is  $\ell^*, p^*$  such that  

$$\min_{\ell,p} B_{a,q}(\ell,p) = B_{a,q}(\ell^*,p^*) \quad and \quad q^{\ell^*} = \binom{k+\ell^*}{ap^*}(q-1)^{ap^*}$$

<ロ><回><日><日><日><日><日><日><日><日><日><日><日</td>24/37

We obtain the following inequalitiy

$$|\ell - ap^*| \leq \logig(ig(k+\ell^*)/\log(q)ig)/\log(q).$$

So,  $\ell 
ightarrow ap^*$  when  $q 
ightarrow \infty$ . Moreover,

$$\mathrm{WF}_{\mathrm{Pra-ISD}} \geq \mathrm{WF}_{\mathcal{A}} \geq q^{(1-ap^*)} \frac{\binom{n}{w}}{\binom{n-k-\ell^*}{w-p^*}} \frac{(q-1)^{ap^*}}{q^{\ell^*}}$$

Therefore,

٠

$$\lim_{q\to\infty}\ell^*=\lim_{q\to\infty}p^*=0.$$

#### **Main Result**

#### Theorem

For all A among the q-ary version of SD-ISD, MMT-ISD and BJMM-NN-ISD<sup>a</sup>, code rate R and error rate  $\tau \leq h^{-1}(1-R)$ , we have

$$\lim_{q\to\infty} WF_{\mathcal{A}}(n, Rn, \tau n, q) = WF_{Pra-ISD}(n, Rn, \tau n).$$

<sup>a</sup>In march 2017, binary BJMM algorithm was extented to q-ary case by using the q - ary nearest neighbor technique

## **Numerical Results**

|     | Pra-ISD | SD-ISD |          |        | MMT-ISD |          |        |
|-----|---------|--------|----------|--------|---------|----------|--------|
| q   | С       | С      | $\ell/n$ | p/n    | С       | $\ell/n$ | p/n    |
| 3   | 0.1826  | 0.1773 | 0.0291   | 0.0119 | 0.1631  | 0.0471   | 0.0287 |
| 8   | 0.3084  | 0.3038 | 0.0507   | 0.0327 | 0.2903  | 0.0162   | 0.0099 |
| 64  | 0.4875  | 0.4861 | 0.0033   | 0.0027 | 0.4832  | 0.0118   | 0.0072 |
| 128 | 0.5286  | 0.5278 | 0.0018   | 0.0015 | 0.5262  | 0.0060   | 0.0035 |
| 256 | 0.5633  | 0.5628 | 0.0010   | 0.0008 | 0.5620  | 0.0030   | 0.0017 |

**Table 1:** Values in code rate R = 0.45 and error rate  $\tau = h_2^{-1}(1 - R)$ 



**Figure 1:**  $R, \tau = h_q^{-1}(1 - R)$  vs *c* (*q* = 3)



**Figure 2:**  $R, \tau = h_q^{-1}(1 - R)$  vs *c* (*q* = 8)

<□ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > 三 の Q (~ 29 / 37



**Figure 3:**  $R, \tau = h_q^{-1}(1 - R)$  vs c (q = 64)

<ロト < 回 ト < 巨 ト < 巨 ト 三 の Q () 30 / 37



**Figure 4:**  $R, \tau = h_q^{-1}(1 - R)$  vs *c* (q = 128)



**Figure 5:**  $R, \tau = h_q^{-1}(1 - R)$  vs *c* (*q* = 256)



**Figure 6:**  $R, \tau = h_q^{-1}(1 - R)$  vs *c* (q = 3)



**Figure 7:**  $R, \tau = h_q^{-1}(1 - R)$  vs *c* (*q* = 8)



**Figure 8:**  $R, \tau = h_q^{-1}(1 - R)$  vs c (q = 64)

<ロト < 団ト < 臣ト < 臣ト < 臣ト 臣 の Q () 35 / 37



**Figure 9:**  $R, \tau = h_q^{-1}(1 - R)$  vs *c* (q = 128)

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > 三 の Q (~ 36 / 37



Figure 10:  $R, \tau = h_q^{-1}(1 - R)$  vs c (q = 256)