Is AEZ v4.1 Sufficiently Resilient Against Key-Recovery Attacks?

Colin Chaigneau¹ and Henri Gilbert² 26/04/2017 - Journées C2 - La Bresse, France

UVSQ¹, ANSSI², France

- 1. AEZ Overview
- 2. AEZ Cryptanalysis
- 3. Conclusion

AEZ - Overview

- submitted by Hoang, Krovetz and Rogaway to the CAESAR competition in 2014
- encode-then-encipher, plaintext expanded before encryption
- high-resilience against nonce/decryption misuse
 - Robust Authenticated Encryption model
 - not attainable by online AE schemes
- versions submitted:
 - AEZ v1-3 initial versions 1st round
 - AEZ v4.x targeted version 2nd (v4.0,v4.1) and 3rd (v4.2) round
 - AEZ v5 last version 3rd round

Security property	Query complexity (block)	Time complexity
Confidentiality	2 ⁵⁵	2 ¹²⁸
Authenticity	2 ⁵⁵	2 ¹²⁸
Robust AE	2 ⁵⁵	2 ¹²⁸

Data limitation: up to 2^{44} blocks can be processed under the same key (safety margin as compared to 2^{55})

- nonce and decryption misuse resistant
- strongest security claims among CAESAR candidates
- no beyond-birthday bound security claim

How resilient is AEZ when approaching the birthday bound?

AEZ version	Data complexity (blocks)	Success prob.	Ref.
AEZ v3	2 ^{66.6}	$1 2^{-45.2}$	[FLS15]
AEZ v3	2 ⁴⁴		[FLS15]

- AEZ v3.0: key-recovery attack by Fuhr, Leurent and Suder [FLS15]
 - nonce-reuse scenario
 - birthday complexity

AEZ version	Data complexity (blocks)	Success prob.	Ref.
AEZ v3 AEZ v3 AEZ v4.x	$2^{66.6}$ 2^{44} $2^{66.5}$	$ \begin{array}{c} 1 \\ 2^{-45.2} \\ 0.5 \end{array} $	[FLS15] [FLS15] Our attack
AEZ v4.x	2 ⁴⁴	$2^{-45.7}$	Our attack

AEZ v4.x: key-recovery attack

- modifications between AEZ v3 and v4 aimed at thwarting the [FLS15] attack
- same attack model and still of birthday complexity
- targets another part of AEZ

Is AEZ v4.1 Sufficiently Resilient Against Key-Recovery Attacks?

Encode-then-encipher: no tag, zeros appended to P, ciphertext larger than P

AEZ uses an AES-based TBC $E_K^{j,i}$

- based on XE or XEX construction
- given a tweak value (j, i), $E_K^{j,i}(X)$ is defined as follows:

$$E_{K}^{j,i}(X) = \underbrace{\frac{\mathsf{XE}}{\mathsf{AES4}(X \oplus O_{in}^{j,i}) \oplus O_{out}^{j,i}}}_{\mathsf{XEX}} \quad \boxed{j,i}$$

 $O^{i,j}_{\bullet}$ depend linearly on I, J and L

AES4: 4-round AES, good differential and linear security bounds for independent sub-keys.

 $\overline{P} = P || 0^{\tau}$

 $\overline{P} = P_1 P'_1 \parallel \dots \parallel P_m P'_m \parallel P_u [P_v] \qquad \parallel P_x P_y$

Note: $X = X_1 \oplus \ldots \oplus X_m \oplus X_u \oplus X_v$

 $\overline{P} = P || 0^{\tau}$

 $\overline{P} = P_1 P'_1 \parallel \dots \parallel P_m P'_m \parallel P_u [P_v] \qquad \parallel P_x P_y$

Note: $\Delta = AEZ-hash(K, T, \tau)$

 $\overline{P} = P || 0^{\tau}$

 $\overline{P} = P_1 P'_1 \parallel \dots \parallel P_m P'_m \parallel P_u [P_v] \qquad \parallel P_x P_y$

Note: $Y = Y_1 \oplus \ldots \oplus Y_m \oplus Y_u \oplus Y_v$

 $\overline{P} = P || 0^{\tau}$

 $\overline{P} = P_1 P'_1 \parallel \dots \parallel P_m P'_m \parallel P_u [P_v] \qquad \parallel P_x P_y$

Note: $\Delta = AEZ-hash(K, T, \tau)$

AEZ - Cryptanalysis

Attack	Data complexity (blocks)	Success prob.
Phase 1	2 ⁴⁴ 2 ^{66.5}	2 ^{-45.6} 0.5
Phase 2	2 ^{34.6}	1

Full secret material (namely I, J, L) can be retrieved with a 2-phase nonce-reuse attack

- Phase 1: birthday-bound attack to recover sub-key *I*
- Phase 2: differential attack on an appropriate AES4 instance to recover full secret material

Note: J and L can also be recovered with a birthday attack

Let $H(B) = E_{\mathcal{K}}(B \oplus O^1) \oplus E_{\mathcal{K}}(B \oplus O^2)$

If $B' = B \oplus O^1 \oplus O^2$ we remark that H(B) = H(B'), birthday complexity to recover $O^1 \oplus O^2$

Let $H(B) = E_{\mathcal{K}}(B \oplus O^1) \oplus E_{\mathcal{K}}(B \oplus O^2)$

If $B' = B \oplus O^1 \oplus O^2$ we remark that H(B) = H(B'), birthday complexity to recover $O^1 \oplus O^2$

Phase 1 - Recovery of Sub-key /

Encryption associated with ${\boldsymbol B}$

Note: $1,1 = AES4_{\mathcal{K}}(B \oplus 8I)$ $1,2 = AES4_{\mathcal{K}}(B \oplus 9I)$

Phase 1 - Recovery of Sub-key /

Encryption associated with $B' = B \oplus I$

Note: $1,1 = AES4_{\mathcal{K}}(B \oplus 8I)$ $1,2 = AES4_{\mathcal{K}}(B \oplus 9I)$

Recovery of Sub-key I

- 1. For MANY values of B, collect the corresponding values $C_{v,B}$
- 2. If a collision occurs, i.e. $C_{y,B} = C_{y,B'}$, this suggests $I = B \oplus B'$ (false alarms can be easily discarded)

Success probability	MANY (block)
0.5	2 ^{66.5}
2 ^{-45.6}	244

Phase 2 - From Sub-key / to Sub-keys J and L

- Phase 1: sub-key / recovery
- Phase 2 (NOW): leverage the knowledge of *I* to recover sub-keys *J* and *L*
- **Targeted part:** AES4 on the *P_u* part

Phase 2 - Appropriate AES4 instance

Let
$$\overline{P} = \underbrace{P_u \mid\mid 0^{128}}_{P_u, P_v} \mid\mid \underbrace{P_x \mid\mid 0^{\tau}}_{P_x, P_y}$$
, we have
$$X = \underbrace{AES4_K(P_u \oplus 4I) \oplus C, \ C \text{ constant}}$$

Since the sub-key I is known from the Phase 1 we have

Differential attack on a 3-round AES4

Phase 2 - AES4 Attack - Difference Propagation

Inject differences on P_u and P_x

if $\delta_u = \delta_x$ then $\delta_y = 0$

Phase 2 - AES4 Attack - 4-1-4 Differential Pattern

Phase 2 - AES4 Attack - Use Of Structures

PROBLEM: $2^{32} \times 2^{32} = 2^{64}$ tests, too much!

SOLUTION: use $(P_u, P_x) \in \mathcal{U} \times (\mathcal{X} \cup \mathcal{X}')$ where \mathcal{U}, \mathcal{X} and \mathcal{X}' are small structures

- reduces the number of input values P_u to 2^{13}
- due to the MixColumns linearity, the number of output values P_x can be reduced to 2×2^{16} values

RESULT: only $2 \times 2^{13} \times 2^{16} = 2^{30}$ tests to find a good pair of differences!

Phase 2 - AES4 Attack - 4-1-4 patterns

- a good pair of differences reduce the number of possible values for 4 bytes of J and L
- rotating the columns of the 4-1-4 pattern allows to target the other parts of J and L

Attack	Data complexity (blocks)	Success prob.
Phase 1	2 ⁴⁴ 2 ^{66.5}	2 ^{-45.6} 0.5
Phase 2	2 ^{34.6}	1

• Key search: time complexity $2^{44} \Rightarrow$ success probability 2^{-84}

Data complexity (block)	Success probability
244	2 ^{-45.6}
2 ^{66.5}	0.5

Conclusion

 modifications made to AEZ v3 to thwart the key-recovery attack [FLS15] were inefficient

- modifications made to AEZ v3 to thwart the key-recovery attack [FLS15] were inefficient
- each sub-key can be recovered by a birthday-bound attack

- modifications made to AEZ v3 to thwart the key-recovery attack [FLS15] were inefficient
- each sub-key can be recovered by a birthday-bound attack
- the three sub-keys can be recovered with the knowledge of only one

- modifications made to AEZ v3 to thwart the key-recovery attack [FLS15] were inefficient
- each sub-key can be recovered by a birthday-bound attack
- the three sub-keys can be recovered with the knowledge of only one
- does not contradict the designers' security claims for AEZ ...

- modifications made to AEZ v3 to thwart the key-recovery attack [FLS15] were inefficient
- each sub-key can be recovered by a birthday-bound attack
- the three sub-keys can be recovered with the knowledge of only one
- does not contradict the designers' security claims for AEZ ...
- ... but it raises some doubts about the resilience of AEZ against key-recovery attacks with birthday complexity

- modifications made to AEZ v3 to thwart the key-recovery attack [FLS15] were inefficient
- each sub-key can be recovered by a birthday-bound attack
- the three sub-keys can be recovered with the knowledge of only one
- does not contradict the designers' security claims for AEZ ...
- ... but it raises some doubts about the resilience of AEZ against key-recovery attacks with birthday complexity

So

Is AEZ v4.1 Sufficiently Resilient Against Key-Recovery Attacks?

• Main modification (March 2017): the offsets of the tweakable block cipher were modified and simplified

$$E_{\mathcal{K}}^{j,i}(X) = \operatorname{AES4}_{\mathcal{K}}(X \oplus j \cdot J \oplus 2^{\lceil i/8 \rceil} \cdot I \oplus (i \mod 8) \cdot L)$$

in order to thwart attacks resulting from a recently spotted colliding offsets issue by Bonnetain et al. [BDDJLMS17]

Our attack has to be tweaked but still works:

- Phase 1: birthday-bound attack on AEZ-prf to obtain the value $3I \oplus 6L$, then compute $2I \oplus 4L$
- Phase 2: differential attack, knowledge of 2*I* ⊕ 4*L* cancels one turn of AES4, recovery of *I*, *J* and *L*

Complexities are marginally increased (but success probability still abnormally high!)

Version	Data complexity (block)	Success probability
AEZ v4.x	2 ⁴⁴	2 ^{-45.6}
	2 ^{66.5}	0.5
AEZ v5	244	2 ⁻⁴⁹
	2 ^{68.2}	0.5

Thanks for your attention **B**