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Primitives

(Public Key) Encryption

Allows to securely exchange information between two parties. Security model: IND-CPA/CCA/CCA2
examples: RSA, ElGamal, McEliece, HQC, . . .

(Authenticated) Key Exchange

Allows two authenticated parties to agree on a common secret securely. Security model: CK, eCK;
PACK
examples: Diffie-Hellman, HMQV, . . .

Key Encapsulation Mechanism (KEM)

An ephemeral session key is encrypted with a PKE. Security model: at least IND-CPA
example: BCNS, Ding/Peikert, NewHope, . . .
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Introduction

Encryption scheme based on Hamming Quasi-Cyclic codes [ABD+16]

Derives from Alekhnovich’s scheme [Ale03],

Inherits its security (IND-CPA under the decisional version of the SD problem on QC codes),

Features a thorough analysis of the Decryption Failure Rate,

Efficient decoding for the proposed codes,

Moderate key sizes: 7kB for 256 bits of security (against 1.25kB for MDPC [MTSB13]).

Intuition

Encryption Message is encoded through a code C
An error term is added to this coding using Public Key

Decryption Secret Key used to remove errors
Code C used for decoding back to the message

Notation → Secret data - Public data - One-time Randomness
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Presentation

Setup(1λ): generates n = n(λ), k = k(λ), δ = δ(λ), and w = w(λ). Plaintext space is Fk
2 .

param= (n, k , δ,w).

KeyGen(param): generates qr
$← V, the parity check matrix Q = (In | rot(qr )), and the generator

matrix G ∈ Fk×n
2 of some code C. sk = (x, y)

$← V2 such that ω(x), ω(y) ≤ w , sets

pk =
(
G,Q, s = sk ·Q>,w

)
, and returns (pk, sk).

Encrypt(pk = (G,Q, s),µ, θ): uses randomness θ to generate ε
$← V, r = (r1, r2)

$← V2 such that
ω(ε), ω(r1), ω(r2) ≤ w , sets v> = Qr> and ρ = µG + s · r2 + ε. It finally returns c = (v,ρ), an
encryption of µ under pk.

Decrypt(sk = (x, y), c = (v,ρ)): returns C.Decode(ρ− v · y).
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Correctness

Correctness Property

Decrypt (sk,Encrypt (pk,µ, θ)) = µ

C.Decode correctly decodes ρ− v · y whenever

the error term is not too big

ω (s · r2 − v · y + ε) ≤ δ
ω ((x + qr · y) · r2 − (r1 + qr · r2) · y + ε) ≤ δ
ω(x · r2 − r1 · y + ε) ≤ δ

Error distribution analysis → Decryption failure probability better understood
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A particular decoding

HQC requires x · r2 − r1 · y + ε to be “small” to correctly decode
Ouroboros further exploits the shape of the error

Cyclic Error Decoding (CED) Problem

Let x, y, r1, r2
$← Snw (F2) with w = O(

√
n), and e

$← Sncw (F2) a random error vector.

Given (x, y) ∈ (Snw (F2))2 and ec ← xr2 − yr1 + e such that ω(r1) = ω(r2) = w , find (r1, r2).

This is essentially a noisy SD problem

x −y r2

r1

+

e
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Hard Decision Decoding: BitFlip

Introduced by Gallager in 1962

Iterative decoding for Low Density Parity Check codes

Decoding capacity increase linearly with the code length

Intuition

1 Compute the number of unsatisfied parity-check equations for each bit of the message

2 If this number is greater than some threshold, flip the bit and go to 1.

3 Stop when the syndrome is null (or after a certain number of iterations).

Easy to understand

Easy to implement

Pretty efficient

The threshold value is crucial [CS16]
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Ouroboros

Requires a hash function Hash : {0, 1}∗ −→ Sncw (F2) [Sen05]

ε of HQC plays the role of the exchanged secret in Ouroboros
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Security Model and Hybrid Argument

Key exchange as an encryption scheme

Same as Ding et al. [Din12, DXL12], Peikert’s [Pei14], BCNS [BCNS15] and NewHope [ADPS16]

Usual game:

Expind−b
E,A (λ)

1. param← Setup(1λ)
2. (pk, sk)← KeyGen(param)
3. (µ0,µ1)← A(FIND : pk)
4. c∗ ← Encrypt(pk,µb, θ)
5. b′ ← A(GUESS : c∗)
6. RETURN b′

Hybrid argument:
1 Construct a sequence of games transitioning from Enc(µ0) to

Enc(µ1)
2 Prove they are indistinguishable one from another
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Security

Definition (SD Distribution)

For positive integers, n, k, and w , the SD(n, k ,w) Distribution chooses H
$← F(n−k)×n and x

$← Fn

such that ω(x) = w , and outputs (H,Hx>).

Definition (Decisional s-QCSD Problem)

For positive integers n, k , w , s, a random parity check matrix H of a QC code C and y
$← Fn, the

Decisional s-Quasi-Cyclic SD Problem s-DQCSD(n, k ,w) asks to decide with non-negligible advantage
whether (H, y>) came from the s-QCSD(n, k ,w) distribution or the uniform distribution over
F(n−k)×n × Fn−k .

Theorem

The scheme presented above is IND-CPA under the 2-DQCSD and 3-DQCSD assumptions.
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Sequence of games from Enc(ε0) to Enc(ε1)

Enc(ε0) Encs?(ε0) Encs?,r?(ε0)

Encs?,r?(ε1)Encs?(ε1)Enc(ε1)

Advind
E,A(λ) ≤ 2 ·

(
Adv2-DQCSD(λ) + Adv3-DQCSD(λ)

)
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Reduction Compliant Parameters

Ouroboros Parameters

Instance n w we threshold security DFR

Low-I 5, 851 47 94 30 80 0.92·10−5

Low-II 5, 923 47 94 30 80 2.3 · 10−6

Medium-I 13, 691 75 150 45 128 0.96·10−5

Medium-II 14, 243 75 150 45 128 1.09·10−6

Strong-I 40, 013 147 294 85 256 4.20·10−5

Strong-II 40, 973 147 294 85 256 < 10−6

Table : Parameter sets for Ouroboros
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Parameters wrt Best Know Attacks

Ouroboros Optimized Parameters

Instance n w we threshold security DFR

Low-I 4, 813 41 123 27 80 2.23·10−5

Low-II 5, 003 41 123 27 80 2.60·10−6

Medium-I 10, 301 67 201 42 128 1.01·10−4

Medium-II 10, 837 67 201 42 128 < 10−7

Strong-I 32, 771 131 393 77 256 < 10−4

Strong-II 33, 997 131 393 77 256 < 10−7

Table : Optimized parameter sets for Ouroboros in Hamming metric
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Conclusion

In this talk

Ouroboros: a secure, simple, and efficient code-based key exchange protocol

Efficient decoding through BitFlip

Competitive parameters

Further Improvements

Improve BitFlip threshold [CS16]

Switch to Rank metric → interlude

Optimize implementation

OpenSSL TLS integration
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Rank Metric Interlude (1/2)

Rank metric defined over (finite) extensions of finite fields

Fq a finite field with q a power of a prime.

Fqm an extension of degree m of Fq.

Fqm can be seen as a vector space on Fq.

B = (b1, ..., bm) a basis of Fqm over Fq.

Let v = (v1, . . . , vn) be a word of length n in Fqm .

Any coordinate vj =
∑m

i=1 vijbi with vij ∈ Fq.
v = (v1, ..., vn)→ V =


v11 v12 . . . v1n

v21 v22 . . . v2n

...
...

. . .
...

vm1 vm2 . . . vmn


Rank weight of word

v has rank r = rank(v) iff the rank of V = (vij)ij is r .
Equivalently rank(v) = r ⇔ vj ∈ Vr ⊂ Fn

qm with dim(Vr )=r.
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Rank Metric Interlude (2/2)

Best Known Attacks have worse complexity in rank metric (2O(n2)) than in Hamming metric (2O(n))
Consequence: worse attacks ⇒ better parameters

Ouroboros-R Parameters

Instance
key size
(bits)

n m q w security
decoding

failure

Ouroboros-R-I 1,591 37 43 2 5 100 10−4

Ouroboros-R-II 2,809 53 53 2 5 128 10−8

Ouroboros-R-III 3, 953 59 67 2 6 192 10−7

Ouroboros-R-IV 5, 293 67 79 2 7 256 10−5

Ouroboros-R-V 5, 618 53 53 4 6 256 10−10

Table : Parameter sets for Ouroboros-R in rank metric.
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Conclusion

In this talk

Ouroboros: a secure, simple, and efficient code-based key exchange protocol

Efficient decoding through BitFlip

Competitive parameters

Further Improvements

Improve BitFlip threshold [CS16]

Switch to Rank metric → interlude

Optimize implementation

OpenSSL TLS integration
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