

Ouroboros: a simple, secure and efficient key exchange protocol based on coding theory

Jean-Christophe Deneuville

<jean-christophe.deneuville@xlim.fr>

April the 27th, 2017 Journées C2 – La Bresse

Joint work with:

P. Gaborit G. Zémor University of Limoges University of Bordeaux

Outline

Security

Preliminaries		

Outline

- Encryption, Key Exchange, KEM
 HQC
- Presentation of the Ouroboros protocol

3 Security

Preliminaries 000000		
Primitives		

(Public Key) Encryption

Allows to securely exchange information between two parties. Security model: IND-CPA/CCA/CCA2 *examples:* RSA, ElGamal, McEliece, HQC, ...

(Authenticated) Key Exchange

Allows two *authenticated* parties to agree on a common secret securely. Security model: CK, eCK; PACK *examples:* Diffie-Hellman, HMQV, ...

Key Encapsulation Mechanism (KEM)

An *ephemeral* session key is encrypted with a PKE. Security model: at least IND-CPA *example:* BCNS, Ding/Peikert, NewHope, ...

Preliminaries		
Primitives		

(Public Key) Encryption

Allows to securely exchange information between two parties. Security model: IND-CPA/CCA/CCA2 *examples:* RSA, ElGamal, McEliece, HQC, ...

(Authenticated) Key Exchange

Allows two *authenticated* parties to agree on a common secret securely. Security model: CK, eCK; PACK *examples:* Diffie-Hellman, HMQV, ...

Key Encapsulation Mechanism (KEM)

An *ephemeral* session key is encrypted with a PKE. Security model: at least IND-CPA *example:* BCNS, Ding/Peikert, NewHope, ...

Preliminaries 000000		
Primitives		

(Public Key) Encryption

Allows to securely exchange information between two parties. Security model: IND-CPA/CCA/CCA2 *examples:* RSA, ElGamal, McEliece, HQC, ...

(Authenticated) Key Exchange

Allows two *authenticated* parties to agree on a common secret securely. Security model: CK, eCK; PACK *examples:* Diffie-Hellman, HMQV, ...

Key Encapsulation Mechanism (KEM)

An *ephemeral* session key is encrypted with a PKE. Security model: at least IND-CPA *example:* BCNS, Ding/Peikert, NewHope, ...

Preliminaries 000000		

Outline

• Encryption, Key Exchange, KEM • HQC

Preliminaries 000000		

Encryption scheme based on Hamming Quasi-Cyclic codes [ABD+16]

- Derives from Alekhnovich's scheme [Ale03],
- Inherits its security (IND-CPA under the decisional version of the SD problem on QC codes),
- Features a thorough analysis of the Decryption Failure Rate,
- Efficient decoding for the proposed codes,
- Moderate key sizes: 7kB for 256 bits of security (against 1.25kB for MDPC [MTSB13]).

Intuition

Encryption

- Message is encoded through a code ${\mathcal C}$
 - An error term is added to this coding using Public Key

Decryption

- Secret Key used to remove errors
 - $\bullet~\mbox{Code}~\ensuremath{\mathcal{C}}$ used for decoding back to the message

Preliminaries	Presentation of the Ouroboros protocol	Security 00000	Parameters 0000	
lutur du attau				

Encryption scheme based on Hamming Quasi-Cyclic codes [ABD+16]

- Derives from Alekhnovich's scheme [Ale03],
- Inherits its security (IND-CPA under the decisional version of the SD problem on QC codes),
- Features a thorough analysis of the Decryption Failure Rate,
- Efficient decoding for the proposed codes,
- Moderate key sizes: 7kB for 256 bits of security (against 1.25kB for MDPC [MTSB13]).

Intuition

Encryption

- ullet Message is encoded through a code ${\mathcal C}$
 - An error term is added to this coding using Public Key

Decryption

- Secret Key used to remove errors
 - $\bullet~\mbox{Code}~\ensuremath{\mathcal{C}}$ used for decoding back to the message

Preliminaries		
000000		
and the second second		

Encryption scheme based on Hamming Quasi-Cyclic codes [ABD+16]

- Derives from Alekhnovich's scheme [Ale03],
- Inherits its security (IND-CPA under the decisional version of the SD problem on QC codes),
- Features a thorough analysis of the Decryption Failure Rate,
- Efficient decoding for the proposed codes,
- Moderate key sizes: 7kB for 256 bits of security (against 1.25kB for MDPC [MTSB13]).

Intuition

Encryption

- ullet Message is encoded through a code ${\mathcal C}$
 - An error term is added to this coding using Public Key

Decryption

- Secret Key used to remove errors
 - $\bullet~\mbox{Code}~\ensuremath{\mathcal{C}}$ used for decoding back to the message

Preliminaries		
000000		
the second second second		

Encryption scheme based on Hamming Quasi-Cyclic codes [ABD+16]

- Derives from Alekhnovich's scheme [Ale03],
- Inherits its security (IND-CPA under the decisional version of the SD problem on QC codes),
- Features a thorough analysis of the Decryption Failure Rate,
- Efficient decoding for the proposed codes,
- Moderate key sizes: 7kB for 256 bits of security (against 1.25kB for MDPC [MTSB13]).

Intuition

Encryption

- ullet Message is encoded through a code ${\mathcal C}$
 - An error term is added to this coding using Public Key

Decryption

- Secret Key used to remove errors
 - $\bullet~\mbox{Code}~\ensuremath{\mathcal{C}}$ used for decoding back to the message

Preliminaries		
000000		
والمتعادية والمتعادية		

Encryption scheme based on Hamming Quasi-Cyclic codes [ABD+16]

- Derives from Alekhnovich's scheme [Ale03],
- Inherits its security (IND-CPA under the decisional version of the SD problem on QC codes),
- Features a thorough analysis of the Decryption Failure Rate,
- Efficient decoding for the proposed codes,
- Moderate key sizes: 7kB for 256 bits of security (against 1.25kB for MDPC [MTSB13]).

Intuition

Encryption

- ullet Message is encoded through a code ${\mathcal C}$
 - An error term is added to this coding using Public Key

Decryption

- Secret Key used to remove errors
 - $\bullet~\mbox{Code}~\ensuremath{\mathcal{C}}$ used for decoding back to the message

Preliminaries			
000000			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Introductic	n		

Encryption scheme based on **H**amming **Q**uasi-**C**yclic codes [ABD⁺16]

- Derives from Alekhnovich's scheme [Ale03],
- Inherits its security (IND-CPA under the decisional version of the SD problem on QC codes), ۲
- Features a thorough analysis of the Decryption Failure Rate.
- Efficient decoding for the proposed codes. ۲
- Moderate key sizes: 7kB for 256 bits of security (against 1.25kB for MDPC [MTSB13]).

Encryption	٠	Me			en	ded	th			
	٠	An	error	te			led	to	this	

- **Decryption** Secret Key used to remove errors
 - Code C used for decoding back to the message

Preliminaries			
000000			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Introductic	n		

Encryption scheme based on Hamming Quasi-Cyclic codes [ABD+16]

- Derives from Alekhnovich's scheme [Ale03],
- Inherits its security (IND-CPA under the decisional version of the SD problem on QC codes),
- Features a thorough analysis of the Decryption Failure Rate,
- Efficient decoding for the proposed codes,
- Moderate key sizes: 7kB for 256 bits of security (against 1.25kB for MDPC [MTSB13]).

- **Encryption** Message is encoded through a code C
 - An error term is added to this coding using Public Key
- Decryption Secret Key used to remove errors
 - $\bullet~\mbox{Code}~\ensuremath{\mathcal{C}}$ used for decoding back to the message
 - Notation \rightarrow Secret data Public data One-time Randomness

Preliminaries		
000000		
Presentation		

- Setup(1^λ): generates n = n(λ), k = k(λ), δ = δ(λ), and w = w(λ). Plaintext space is 𝔽^k₂.
 param= (n, k, δ, w).
- KeyGen(param): generates q_r ^{\$} V, the parity check matrix Q = (I_n | rot(q_r)), and the generator matrix G ∈ F^{k×n}₂ of some code C. sk = (x, y) ^{\$} V² such that ω(x), ω(y) ≤ w, sets pk = (G, Q, s = sk · Q^T, w), and returns (pk, sk).
- Encrypt(pk = (G, Q, s), μ , θ): uses randomness θ to generate $\epsilon \stackrel{\$}{\leftarrow} \mathcal{V}$, $\mathbf{r} = (\mathbf{r}_1, \mathbf{r}_2) \stackrel{\$}{\leftarrow} \mathcal{V}^2$ such that $\omega(\epsilon), \omega(\mathbf{r}_1), \omega(\mathbf{r}_2) \leq w$, sets $\mathbf{v}^\top = \mathbf{Q}\mathbf{r}^\top$ and $\rho = \mu\mathbf{G} + \mathbf{s} \cdot \mathbf{r}_2 + \epsilon$. It finally returns $\mathbf{c} = (\mathbf{v}, \rho)$, an encryption of μ under pk.

• Decrypt(sk = (x, y), c = (v,
$$\rho$$
)): returns C .Decode($\rho - \mathbf{v} \cdot \mathbf{y}$).

Preliminaries			
000000			
Presentatior	1		

- Setup (1^{λ}) : generates $n = n(\lambda)$, $k = k(\lambda)$, $\delta = \delta(\lambda)$, and $w = w(\lambda)$. Plaintext space is \mathbb{F}_2^k . param= (n, k, δ, w) .
- KeyGen(param): generates q_r ^{\$} V, the parity check matrix Q = (I_n | rot(q_r)), and the generator matrix G ∈ F^{k×n}₂ of some code C. sk = (x, y) ^{\$} V² such that ω(x), ω(y) ≤ w, sets pk = (G, Q, s = sk · Q^T, w), and returns (pk, sk).

• Encrypt(pk = (G, Q, s), μ , θ): uses randomness θ to generate $\epsilon \stackrel{\$}{\leftarrow} \mathcal{V}$, $\mathbf{r} = (\mathbf{r}_1, \mathbf{r}_2) \stackrel{\$}{\leftarrow} \mathcal{V}^2$ such that $\omega(\epsilon), \omega(\mathbf{r}_1), \omega(\mathbf{r}_2) \leq w$, sets $\mathbf{v}^\top = \mathbf{Q}\mathbf{r}^\top$ and $\rho = \mu\mathbf{G} + \mathbf{s} \cdot \mathbf{r}_2 + \epsilon$. It finally returns $\mathbf{c} = (\mathbf{v}, \rho)$, an encryption of μ under pk.

• Decrypt(sk = (x, y), c = (v,
$$\rho$$
)): returns C .Decode($\rho - v \cdot y$).

Preliminaries		
000000		
Presentation		

- Setup (1^{λ}) : generates $n = n(\lambda)$, $k = k(\lambda)$, $\delta = \delta(\lambda)$, and $w = w(\lambda)$. Plaintext space is \mathbb{F}_2^k . param= (n, k, δ, w) .
- KeyGen(param): generates q_r ^{\$} V, the parity check matrix Q = (I_n | rot(q_r)), and the generator matrix G ∈ F₂^{k×n} of some code C. sk = (x, y) ^{\$} V² such that ω(x), ω(y) ≤ w, sets pk = (G, Q, s = sk · Q^T, w), and returns (pk, sk).

• Encrypt(pk = (G, Q, s), μ , θ): uses randomness θ to generate $\epsilon \stackrel{\$}{\leftarrow} \mathcal{V}$, $\mathbf{r} = (\mathbf{r}_1, \mathbf{r}_2) \stackrel{\$}{\leftarrow} \mathcal{V}^2$ such that $\omega(\epsilon), \omega(\mathbf{r}_1), \omega(\mathbf{r}_2) \leq w$, sets $\mathbf{v}^\top = \mathbf{Q}\mathbf{r}^\top$ and $\rho = \mu \mathbf{G} + \mathbf{s} \cdot \mathbf{r}_2 + \epsilon$. It finally returns $\mathbf{c} = (\mathbf{v}, \rho)$, an encryption of μ under pk.

• Decrypt(sk = (x, y), c = (v, ρ)): returns C.Decode($\rho - v \cdot y$).

Preliminaries		
000000		
Presentation		

- Setup(1^{λ}): generates $n = n(\lambda)$, $k = k(\lambda)$, $\delta = \delta(\lambda)$, and $w = w(\lambda)$. Plaintext space is \mathbb{F}_2^k . param= (n, k, δ, w) .
- KeyGen(param): generates q_r ^{\$}← V, the parity check matrix Q = (I_n | rot(q_r)), and the generator matrix G ∈ F₂^{k×n} of some code C. sk = (x, y) ^{\$}← V² such that ω(x), ω(y) ≤ w, sets pk = (G, Q, s = sk · Q^T, w), and returns (pk, sk).

• Encrypt(pk = (G, Q, s), μ , θ): uses randomness θ to generate $\epsilon \stackrel{\$}{\leftarrow} \mathcal{V}$, $\mathbf{r} = (\mathbf{r}_1, \mathbf{r}_2) \stackrel{\$}{\leftarrow} \mathcal{V}^2$ such that $\omega(\epsilon), \omega(\mathbf{r}_1), \omega(\mathbf{r}_2) \leq w$, sets $\mathbf{v}^\top = \mathbf{Q}\mathbf{r}^\top$ and $\rho = \mu \mathbf{G} + \mathbf{s} \cdot \mathbf{r}_2 + \epsilon$. It finally returns $\mathbf{c} = (\mathbf{v}, \rho)$, an encryption of μ under pk.

•
$$\mathsf{Decrypt}(\mathsf{sk} = (\mathsf{x}, \mathsf{y}), \mathsf{c} = (\mathsf{v}, \rho))$$
: returns $\mathcal{C}.\mathsf{Decode}(\rho - \mathsf{v} \cdot \mathsf{y})$.

Preliminaries		
00000		
Correctness		

Correctness Property

$\mathsf{Decrypt}\left(\mathsf{sk},\mathsf{Encrypt}\left(\mathsf{pk},\boldsymbol{\mu},\boldsymbol{\theta} ight) ight)=\boldsymbol{\mu}$

 $\mathcal{C}.\mathsf{Decode}$ correctly decodes $oldsymbol{
ho} - \mathbf{v} \cdot \mathbf{y}$ whenever

the error term is **not too big** $\omega (\mathbf{s} \cdot \mathbf{r}_2 - \mathbf{v} \cdot \mathbf{y} + \boldsymbol{\epsilon}) \leq \delta$ $\omega ((\mathbf{x} + \mathbf{q}_r \cdot \mathbf{y}) \cdot \mathbf{r}_2 - (\mathbf{r}_1 + \mathbf{q}_r \cdot \mathbf{r}_2) \cdot \mathbf{y} + \boldsymbol{\epsilon}) \leq \delta$ $\omega (\mathbf{x} \cdot \mathbf{r}_2 - \mathbf{r}_1 \cdot \mathbf{y} + \boldsymbol{\epsilon}) \leq \delta$

Error distribution analysis ightarrow Decryption failure probability better understood

Preliminaries		
00000		
Correctness		

Correctness Property

 $\mathsf{Decrypt}\left(\mathsf{sk},\mathsf{Encrypt}\left(\mathsf{pk},\boldsymbol{\mu},\boldsymbol{\theta}\right)\right)=\boldsymbol{\mu}$

 $\mathcal{C}.$ Decode correctly decodes $oldsymbol{
ho}-\mathbf{v}\cdot\mathbf{y}$ whenever

the error term is **not too big**
$$\begin{split} &\omega\left(\mathbf{s}\cdot\mathbf{r}_{2}-\mathbf{v}\cdot\mathbf{y}+\boldsymbol{\epsilon}\right)\leq\delta\\ &\omega\left(\left(\mathbf{x}+\mathbf{q}_{r}\cdot\mathbf{y}\right)\cdot\mathbf{r}_{2}-\left(\mathbf{r}_{1}+\mathbf{q}_{r}\cdot\mathbf{r}_{2}\right)\cdot\mathbf{y}+\boldsymbol{\epsilon}\right)\leq\delta\\ &\omega\left(\mathbf{x}\cdot\mathbf{r}_{2}-\mathbf{r}_{1}\cdot\mathbf{y}+\boldsymbol{\epsilon}\right)\leq\delta \end{split}$$

Error distribution analysis \rightarrow Decryption failure probability better understood

Preliminaries		
00000		
Correctness		

Correctness Property

 $\mathsf{Decrypt}\left(\mathsf{sk},\mathsf{Encrypt}\left(\mathsf{pk},\boldsymbol{\mu},\boldsymbol{\theta}\right)\right)=\boldsymbol{\mu}$

 $\mathcal{C}.\mathsf{Decode} ext{ correctly decodes } oldsymbol{
ho} - \mathbf{v} \cdot \mathbf{y} ext{ whenever}$

the error term is **not too big** $\omega (\mathbf{s} \cdot \mathbf{r}_2 - \mathbf{v} \cdot \mathbf{y} + \boldsymbol{\epsilon}) \leq \delta$ $\omega ((\mathbf{x} + \mathbf{q}_r \cdot \mathbf{y}) \cdot \mathbf{r}_2 - (\mathbf{r}_1 + \mathbf{q}_r \cdot \mathbf{r}_2) \cdot \mathbf{y} + \boldsymbol{\epsilon}) \leq \delta$ $\omega (\mathbf{x} \cdot \mathbf{r}_2 - \mathbf{r}_1 \cdot \mathbf{y} + \boldsymbol{\epsilon}) \leq \delta$

Error distribution analysis \rightarrow Decryption failure probability better understood

Presentation of the Ouroboros protocol O00000		

Outline

Presentation of the Ouroboros protocol

- Cyclic Error Decoding
- BitFlip algorithm
- Description of the protocol

3 Security

Presentation of the Ouroboros protocol		
00000		

- HQC requires $\mathbf{x} \cdot \mathbf{r}_2 \mathbf{r}_1 \cdot \mathbf{y} + \boldsymbol{\epsilon}$ to be "small" to correctly decode
- Ouroboros further exploits the shape of the error

Cyclic Error Decoding (CED) Problem

• Let $\mathbf{x}, \mathbf{y}, \mathbf{r}_1, \mathbf{r}_2 \stackrel{s}{\leftarrow} S_w^n(\mathbb{F}_2)$ with $w = \mathcal{O}(\sqrt{n})$, and $\mathbf{e} \stackrel{s}{\leftarrow} S_{cw}^n(\mathbb{F}_2)$ a random error vector.

• Given $(\mathbf{x},\mathbf{y})\in (\mathcal{S}^n_w(\mathbb{F}_2))^2$ and $\mathbf{e}_\mathsf{c}\leftarrow \mathbf{x}\mathbf{r}_2-\mathbf{y}\mathbf{r}_1+\mathbf{e}$ such that $\omega(\mathbf{r}_1)=\omega(\mathbf{r}_2)=w$, find $(\mathbf{r}_1,\mathbf{r}_2)$.

Presentation of the Ouroboros protocol		

- HQC requires $\mathbf{x} \cdot \mathbf{r}_2 \mathbf{r}_1 \cdot \mathbf{y} + \boldsymbol{\epsilon}$ to be "small" to correctly decode
- Ouroboros further exploits the shape of the error

Cyclic Error Decoding (CED) Problem

• Let $\mathbf{x}, \mathbf{y}, \mathbf{r}_1, \mathbf{r}_2 \stackrel{s}{\leftarrow} S_w^n(\mathbb{F}_2)$ with $w = \mathcal{O}(\sqrt{n})$, and $\mathbf{e} \stackrel{s}{\leftarrow} S_{cw}^n(\mathbb{F}_2)$ a random error vector. • Given $(\mathbf{x}, \mathbf{y}) \in (S_w^n(\mathbb{F}_2))^2$ and $\mathbf{e}_c \leftarrow \mathbf{x}\mathbf{r}_2 - \mathbf{y}\mathbf{r}_1 + \mathbf{e}$ such that $\omega(\mathbf{r}_1) = \omega(\mathbf{r}_2) = w$, find $(\mathbf{r}_1, \mathbf{v}_2) = w$.

Presentation of the Ouroboros protocol 000000		

- HQC requires $\mathbf{x} \cdot \mathbf{r}_2 \mathbf{r}_1 \cdot \mathbf{y} + \boldsymbol{\epsilon}$ to be "small" to correctly decode
- Ouroboros further exploits the shape of the error

Cyclic Error Decoding (CED) Problem

- Let $\mathbf{x}, \mathbf{y}, \mathbf{r}_1, \mathbf{r}_2 \stackrel{\$}{\leftarrow} \mathcal{S}_w^n(\mathbb{F}_2)$ with $w = \mathcal{O}(\sqrt{n})$, and $\mathbf{e} \stackrel{\$}{\leftarrow} \mathcal{S}_{cw}^n(\mathbb{F}_2)$ a random error vector.
- Given $(\mathbf{x}, \mathbf{y}) \in (\mathcal{S}_w^n(\mathbb{F}_2))^2$ and $\mathbf{e}_{\mathbf{c}} \leftarrow \mathbf{x}\mathbf{r}_2 \mathbf{y}\mathbf{r}_1 + \mathbf{e}$ such that $\omega(\mathbf{r}_1) = \omega(\mathbf{r}_2) = w$, find $(\mathbf{r}_1, \mathbf{r}_2)$.

Presentation of the Ouroboros protocol 000000		

- HQC requires $\mathbf{x} \cdot \mathbf{r}_2 \mathbf{r}_1 \cdot \mathbf{y} + \boldsymbol{\epsilon}$ to be "small" to correctly decode
- Ouroboros further exploits the shape of the error

Cyclic Error Decoding (CED) Problem

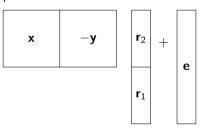
- Let $\mathbf{x}, \mathbf{y}, \mathbf{r}_1, \mathbf{r}_2 \stackrel{\$}{\leftarrow} \mathcal{S}_w^n(\mathbb{F}_2)$ with $w = \mathcal{O}(\sqrt{n})$, and $\mathbf{e} \stackrel{\$}{\leftarrow} \mathcal{S}_{cw}^n(\mathbb{F}_2)$ a random error vector.
- Given $(\mathbf{x}, \mathbf{y}) \in (\mathcal{S}_w^n(\mathbb{F}_2))^2$ and $\mathbf{e}_{\mathbf{c}} \leftarrow \mathbf{x}\mathbf{r}_2 \mathbf{y}\mathbf{r}_1 + \mathbf{e}$ such that $\omega(\mathbf{r}_1) = \omega(\mathbf{r}_2) = w$, find $(\mathbf{r}_1, \mathbf{r}_2)$.

Presentation of the Ouroboros protocol		

- HQC requires $\mathbf{x} \cdot \mathbf{r}_2 \mathbf{r}_1 \cdot \mathbf{y} + \boldsymbol{\epsilon}$ to be "small" to correctly decode
- Ouroboros further exploits the shape of the error

Cyclic Error Decoding (CED) Problem

- Let $\mathbf{x}, \mathbf{y}, \mathbf{r}_1, \mathbf{r}_2 \stackrel{\$}{\leftarrow} \mathcal{S}_w^n(\mathbb{F}_2)$ with $w = \mathcal{O}(\sqrt{n})$, and $\mathbf{e} \stackrel{\$}{\leftarrow} \mathcal{S}_{cw}^n(\mathbb{F}_2)$ a random error vector.
- Given $(\mathbf{x}, \mathbf{y}) \in (\mathcal{S}_w^n(\mathbb{F}_2))^2$ and $\mathbf{e}_{\mathbf{c}} \leftarrow \mathbf{x}\mathbf{r}_2 \mathbf{y}\mathbf{r}_1 + \mathbf{e}$ such that $\omega(\mathbf{r}_1) = \omega(\mathbf{r}_2) = w$, find $(\mathbf{r}_1, \mathbf{r}_2)$.
- This is essentially a *noisy* SD problem



Presentation of the Ouroboros protocol 00●●000		

Outline

Presentation of the Ouroboros protocol

- Cyclic Error Decoding
- BitFlip algorithm
- Description of the protocol
- 3 Security

Presentation of the Ouroboros protocol		

Hard Decision Decoding: BitFlip

• Introduced by Gallager in 1962

- Iterative decoding for Low Density Parity Check codes
- Decoding capacity increase linearly with the code length

- Compute the number of unsatisfied parity-check equations for each bit of the message
- If this number is greater than some *threshold*, flip the bit and go to 1.
- Stop when the syndrome is null (or after a certain number of iterations).
- Easy to understand
- Easy to implement
- Pretty efficient
- The threshold value is crucial [CS16]

Presentation of the Ouroboros protocol		

Hard Decision Decoding: BitFlip

- Introduced by Gallager in 1962
- Iterative decoding for Low Density Parity Check codes
- Decoding capacity increase linearly with the code length

- Compute the number of unsatisfied parity-check equations for each bit of the message
- If this number is greater than some *threshold*, flip the bit and go to 1.
- Stop when the syndrome is null (or after a certain number of iterations).
- Easy to understand
- Easy to implement
- Pretty efficient
- The threshold value is crucial [CS16]

Presentation of the Ouroboros protocol		
000000		

Hard Decision Decoding: BitFlip

- Introduced by Gallager in 1962
- Iterative decoding for Low Density Parity Check codes
- Decoding capacity increase linearly with the code length

- Compute the number of unsatisfied parity-check equations for each bit of the message
- If this number is greater than some *threshold*, flip the bit and go to 1.
- Stop when the syndrome is null (or after a certain number of iterations).
- Easy to understand
- Easy to implement
- Pretty efficient
- The threshold value is crucial [CS16]

	Presentation of the Ouroboros protocol		
Hard Deci	sion Deceding, RitElin		

- Hard Decision Decoding: BitFlip
 - Introduced by Gallager in 1962
 - Iterative decoding for Low Density Parity Check codes
 - Decoding capacity increase linearly with the code length

• Compute the number of unsatisfied parity-check equations for each bit of the message

If this number is greater than some threshold, flip the bit and go to 1.

Stop when the syndrome is null (or after a certain number of iterations)

- Easy to understand
- Easy to implement
- Pretty efficient
- The threshold value is crucial [CS16]

	Presentation of the Ouroboros protocol		
Hard Decis	ion Decoding: BitFlip		

- Introduced by Gallager in 1962
- Iterative decoding for Low Density Parity Check codes
- Decoding capacity increase linearly with the code length

- Compute the number of unsatisfied parity-check equations for each bit of the message
- If this number is greater than some *threshold*, flip the bit and go to 1.
- Stop when the syndrome is null (or after a certain number of iterations)
- Easy to understand
- Easy to implement
- Pretty efficient
- The threshold value is crucial [CS16]

	Presentation of the Ouroboros protocol		
Hard Decis	ion Decoding: BitFlip		

- Introduced by Gallager in 1962
- Iterative decoding for Low Density Parity Check codes
- Decoding capacity increase linearly with the code length

- Compute the number of unsatisfied parity-check equations for each bit of the message
- If this number is greater than some *threshold*, flip the bit and go to 1.
- Stop when the syndrome is null (or after a certain number of iterations).
- Easy to understand
- Easy to implement
- Pretty efficient
- The threshold value is crucial [CS16]

	Presentation of the Ouroboros protocol		
Hard Decis	ion Decoding: BitFlip		

- Introduced by Gallager in 1962
- Iterative decoding for Low Density Parity Check codes
- Decoding capacity increase linearly with the code length

- Compute the number of unsatisfied parity-check equations for each bit of the message
- If this number is greater than some *threshold*, flip the bit and go to 1.
- Stop when the syndrome is null (or after a certain number of iterations).

• Easy to understand

- Easy to implement
- Pretty efficient
- The threshold value is crucial [CS16]

	Presentation of the Ouroboros protocol		
Hard Decis	ion Decoding: BitFlip		

- Introduced by Gallager in 1962
- Iterative decoding for Low Density Parity Check codes
- Decoding capacity increase linearly with the code length

- Compute the number of unsatisfied parity-check equations for each bit of the message
- If this number is greater than some *threshold*, flip the bit and go to 1.
- Stop when the syndrome is null (or after a certain number of iterations).
- Easy to understand
- Easy to implement
- Pretty efficient
- The threshold value is crucial [CS16]

	Presentation of the Ouroboros protocol		
Hard Decis	ion Decoding: BitFlip		

- Introduced by Gallager in 1962
- Iterative decoding for Low Density Parity Check codes
- Decoding capacity increase linearly with the code length

Intuition

- Compute the number of unsatisfied parity-check equations for each bit of the message
- If this number is greater than some *threshold*, flip the bit and go to 1.
- Stop when the syndrome is null (or after a certain number of iterations).
- Easy to understand
- Easy to implement
- Pretty efficient
- The threshold value is crucial [CS16]

	Presentation of the Ouroboros protocol		
Hard Decis	ion Decoding: BitFlip		

- Introduced by Gallager in 1962
- Iterative decoding for Low Density Parity Check codes
- Decoding capacity increase linearly with the code length

Intuition

- Compute the number of unsatisfied parity-check equations for each bit of the message
- If this number is greater than some *threshold*, flip the bit and go to 1.
- Stop when the syndrome is null (or after a certain number of iterations).
- Easy to understand
- Easy to implement
- Pretty efficient
- The threshold value is crucial [CS16]

Presentation of the Ouroboros protocol		

Outline

Presentation of the Ouroboros protocol

- Cyclic Error Decoding
- BitFlip algorithm
- Description of the protocol
- 3 Security

Presentation of the Ouroboros protocol 00000●		

Ouroboros

- Requires a hash function Hash : $\{0,1\}^* \longrightarrow \mathcal{S}^n_{cw}(\mathbb{F}_2)$ [Sen05]
- ϵ of HQC plays the role of the exchanged secret in Ouroboros
- CE-Decoder is a modified BitFlip algorithm to solve the CED problem

	Presentation of the Ouroboros protocol		
	00000		
Ouroboros			

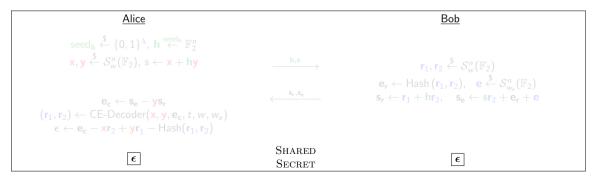
- Requires a hash function Hash : $\{0,1\}^* \longrightarrow \mathcal{S}^n_{cw}(\mathbb{F}_2)$ [Sen05]
- $\bullet~\epsilon$ of HQC plays the role of the exchanged secret in Ouroboros
- CE-Decoder is a modified BitFlip algorithm to solve the CED problem

	Presentation of the Ouroboros protocol		
	00000		
Ouroboros			

- Requires a hash function Hash : $\{0,1\}^* \longrightarrow \mathcal{S}^n_{cw}(\mathbb{F}_2)$ [Sen05]
- $\bullet~\epsilon$ of HQC plays the role of the exchanged secret in Ouroboros
- CE-Decoder is a modified BitFlip algorithm to solve the CED problem

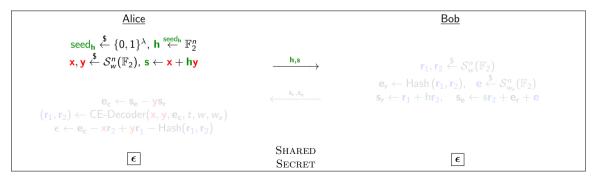
	Presentation of the Ouroboros protocol		
	00000		
Ouroboros			

- Requires a hash function Hash : $\{0,1\}^* \longrightarrow \mathcal{S}^n_{cw}(\mathbb{F}_2)$ [Sen05]
- $\bullet~\epsilon$ of HQC plays the role of the exchanged secret in Ouroboros
- CE-Decoder is a modified BitFlip algorithm to solve the CED problem



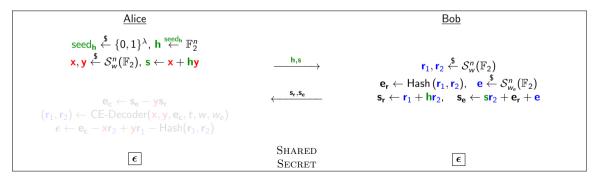
	Presentation of the Ouroboros protocol		
	00000		
Ouroboros			

- Requires a hash function Hash : $\{0,1\}^* \longrightarrow \mathcal{S}^n_{cw}(\mathbb{F}_2)$ [Sen05]
- $\bullet~\epsilon$ of HQC plays the role of the exchanged secret in Ouroboros
- CE-Decoder is a modified BitFlip algorithm to solve the CED problem



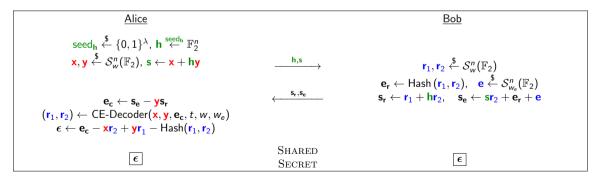
	Presentation of the Ouroboros protocol		
	00000		
Ouroboros			

- Requires a hash function Hash : $\{0,1\}^* \longrightarrow \mathcal{S}^n_{cw}(\mathbb{F}_2)$ [Sen05]
- $\bullet~\epsilon$ of HQC plays the role of the exchanged secret in Ouroboros
- CE-Decoder is a modified BitFlip algorithm to solve the CED problem



	Presentation of the Ouroboros protocol		
	00000		
Ouroboros			

- Requires a hash function Hash : $\{0,1\}^* \longrightarrow \mathcal{S}^n_{cw}(\mathbb{F}_2)$ [Sen05]
- $\bullet~\epsilon$ of HQC plays the role of the exchanged secret in Ouroboros
- CE-Decoder is a modified BitFlip algorithm to solve the CED problem



Preliminaries 000000	Presentation of the Ouroboros protocol	Security ●0000	Parameters 0000	

Outline

Security

- Security Model and Hybrid Argument
- Sketch of proof

• Key exchange as an encryption scheme

• Same as Ding et al. [Din12, DXL12], Peikert's [Pei14], BCNS [BCNS15] and NEWHOPE [ADPS16]

• Usual game:

```
\begin{aligned} & \mathbf{Exp}_{\mathcal{E},\mathcal{A}}^{\mathrm{ind}-b}(\lambda) \\ & 1. \text{ param} \leftarrow \mathrm{Setup}(1^{\lambda}) \\ & 2. (\mathrm{pk}, \mathbf{sk}) \leftarrow \mathrm{KeyGen}(\mathrm{param}) \\ & 3. (\boldsymbol{\mu}_0, \boldsymbol{\mu}_1) \leftarrow \mathcal{A}(\mathrm{FIND}: \mathrm{pk}) \\ & 4. \mathbf{c}^* \leftarrow \mathrm{Encrypt}(\mathrm{pk}, \boldsymbol{\mu}_b, \theta) \\ & 5. b' \leftarrow \mathcal{A}(\mathrm{GUESS}: \mathbf{c}^*) \\ & 6. \text{ RETURN } b' \end{aligned}
```

• Hybrid argument:

- Construct a sequence of games transitioning from Enc(µ₀) to Enc(µ₁)
- Prove they are indistinguishable one from another

	0000	

- Key exchange as an encryption scheme
- Same as Ding et al. [Din12, DXL12], Peikert's [Pei14], BCNS [BCNS15] and NEWHOPE [ADPS16]

• Usual game:

```
\begin{aligned} & \mathbf{Exp}_{\mathcal{E},\mathcal{A}}^{\mathrm{ind}-b}(\lambda) \\ & 1. \text{ param} \leftarrow \mathrm{Setup}(1^{\lambda}) \\ & 2. (\mathrm{pk}, \mathbf{sk}) \leftarrow \mathrm{KeyGen}(\mathrm{param}) \\ & 3. (\mu_0, \mu_1) \leftarrow \mathcal{A}(\mathrm{FIND}: \mathrm{pk}) \\ & 4. \mathbf{c}^* \leftarrow \mathrm{Encrypt}(\mathrm{pk}, \mu_b, \theta) \\ & 5. b' \leftarrow \mathcal{A}(\mathrm{GUESS}: \mathbf{c}^*) \\ & 6. \text{ RETURN } b' \end{aligned}
```

• Hybrid argument:

- Construct a sequence of games transitioning from Enc(µ0) to Enc(µ1)
- Prove they are indistinguishable one from another

	0000	

- Key exchange as an encryption scheme
- Same as Ding et al. [Din12, DXL12], Peikert's [Pei14], BCNS [BCNS15] and NEWHOPE [ADPS16]
- Usual game:

```
\begin{aligned} & \mathbf{Exp}_{\mathcal{E},\mathcal{A}}^{\mathrm{ind}-b}(\lambda) \\ & 1. \text{ param} \leftarrow \mathrm{Setup}(1^{\lambda}) \\ & 2. (\mathrm{pk}, \mathbf{sk}) \leftarrow \mathrm{KeyGen}(\mathrm{param}) \\ & 3. (\mu_0, \mu_1) \leftarrow \mathcal{A}(\mathrm{FIND}: \mathrm{pk}) \\ & 4. \mathbf{c}^* \leftarrow \mathrm{Encrypt}(\mathrm{pk}, \mu_b, \theta) \\ & 5. b' \leftarrow \mathcal{A}(\mathrm{GUESS}: \mathbf{c}^*) \\ & 6. \text{ RETURN } b' \end{aligned}
```

- Hybrid argument:
 - Construct a sequence of games transitioning from Enc(µ₀) to Enc(µ₁)
 - Prove they are indistinguishable one from another

	Security 00000	

- Key exchange as an encryption scheme
- Same as Ding et al. [Din12, DXL12], Peikert's [Pei14], BCNS [BCNS15] and NEWHOPE [ADPS16]
- Usual game:

```
\begin{aligned} & \mathbf{Exp}_{\mathcal{E},\mathcal{A}}^{\mathrm{ind}-b}(\lambda) \\ & 1. \text{ param} \leftarrow \mathrm{Setup}(1^{\lambda}) \\ & 2. (\mathrm{pk}, \mathbf{sk}) \leftarrow \mathrm{KeyGen}(\mathrm{param}) \\ & 3. (\boldsymbol{\mu}_0, \boldsymbol{\mu}_1) \leftarrow \mathcal{A}(\mathrm{FIND}: \mathrm{pk}) \\ & 4. \mathbf{c}^* \leftarrow \mathrm{Encrypt}(\mathrm{pk}, \boldsymbol{\mu}_b, \theta) \\ & 5. b' \leftarrow \mathcal{A}(\mathrm{GUESS}: \mathbf{c}^*) \\ & 6. \text{ RETURN } b' \end{aligned}
```

- Hybrid argument:
 - Construct a sequence of games transitioning from Enc(µ₀) to Enc(µ₁)
 - Prove they are indistinguishable one from another

	Security 00000	
Security		

Definition (SD Distribution)

For positive integers, *n*, *k*, and *w*, the SD(n, k, w) Distribution chooses $\mathbf{H} \stackrel{\$}{\leftarrow} \mathbb{F}^{(n-k) \times n}$ and $\mathbf{x} \stackrel{\$}{\leftarrow} \mathbb{F}^n$ such that $\omega(\mathbf{x}) = w$, and outputs $(\mathbf{H}, \mathbf{H}\mathbf{x}^{\top})$.

Definition (Decisional *s*-QCSD Problem)

For positive integers *n*, *k*, *w*, *s*, a random parity check matrix **H** of a QC code C and $\mathbf{y} \stackrel{s}{\leftarrow} \mathbb{F}^n$, the *Decisional s-Quasi-Cyclic SD Problem s-DQCSD*(*n*, *k*, *w*) asks to decide with non-negligible advantage whether $(\mathbf{H}, \mathbf{y}^{\top})$ came from the *s*-QCSD(*n*, *k*, *w*) distribution or the uniform distribution over $\mathbb{F}^{(n-k)\times n} \times \mathbb{F}^{n-k}$.

Theorem

The scheme presented above is IND-CPA under the 2-DQCSD and 3-DQCSD assumptions.

000000	000000	00000	0000	i i i i i i i i i i i i i i i i i i i
Security				

Definition (SD Distribution)

For positive integers, *n*, *k*, and *w*, the SD(n, k, w) Distribution chooses $\mathbf{H} \stackrel{\$}{\leftarrow} \mathbb{F}^{(n-k) \times n}$ and $\mathbf{x} \stackrel{\$}{\leftarrow} \mathbb{F}^n$ such that $\omega(\mathbf{x}) = w$, and outputs $(\mathbf{H}, \mathbf{H}\mathbf{x}^{\top})$.

Definition (Decisional *s*-QCSD Problem)

For positive integers *n*, *k*, *w*, *s*, a random parity check matrix **H** of a QC code C and $\mathbf{y} \leftarrow^{\$} \mathbb{F}^{n}$, the *Decisional s-Quasi-Cyclic SD Problem s-DQCSD*(*n*, *k*, *w*) asks to decide with non-negligible advantage whether $(\mathbf{H}, \mathbf{y}^{\top})$ came from the *s*-QCSD(*n*, *k*, *w*) distribution or the uniform distribution over $\mathbb{F}^{(n-k)\times n} \times \mathbb{F}^{n-k}$.

Theorem

The scheme presented above is IND-CPA under the 2-DQCSD and 3-DQCSD assumptions.

	Security OOOOO	
Security		

Definition (SD Distribution)

For positive integers, *n*, *k*, and *w*, the SD(n, k, w) Distribution chooses $\mathbf{H} \stackrel{\$}{\leftarrow} \mathbb{F}^{(n-k) \times n}$ and $\mathbf{x} \stackrel{\$}{\leftarrow} \mathbb{F}^n$ such that $\omega(\mathbf{x}) = w$, and outputs $(\mathbf{H}, \mathbf{H}\mathbf{x}^{\top})$.

Definition (Decisional *s*-QCSD Problem)

For positive integers *n*, *k*, *w*, *s*, a random parity check matrix **H** of a QC code C and $\mathbf{y} \leftarrow^{\$} \mathbb{F}^{n}$, the *Decisional s-Quasi-Cyclic SD Problem s-DQCSD*(*n*, *k*, *w*) asks to decide with non-negligible advantage whether $(\mathbf{H}, \mathbf{y}^{\top})$ came from the *s*-QCSD(*n*, *k*, *w*) distribution or the uniform distribution over $\mathbb{F}^{(n-k)\times n} \times \mathbb{F}^{n-k}$.

Theorem

The scheme presented above is IND-CPA under the 2-DQCSD and 3-DQCSD assumptions.

	Security	

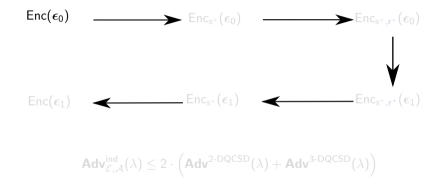
Outline

3 Security

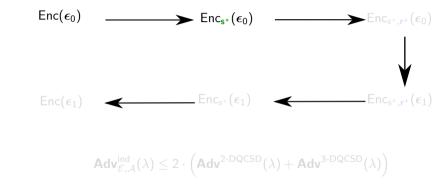
- Security Model and Hybrid Argument
- Sketch of proof

4 Parameters

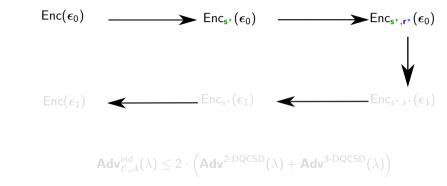
	00000	



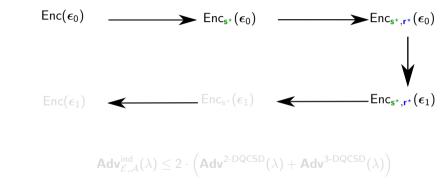
	00000	



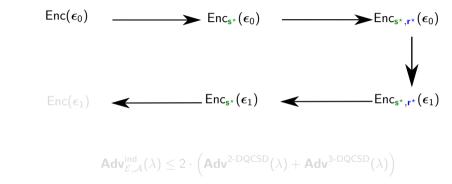
	00000	



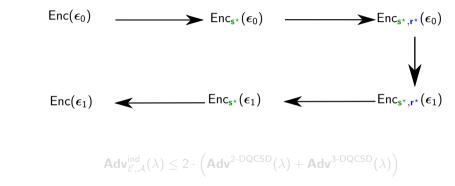
	00000	



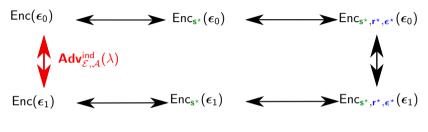
	00000	



	00000	

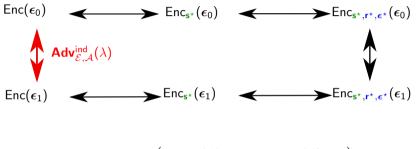


	0000	



$$\mathbf{Adv}^{\mathrm{ind}}_{\mathcal{E},\mathcal{A}}(\lambda) \leq 2 \cdot \left(\mathbf{Adv}^{2 \cdot \mathrm{DQCSD}}(\lambda) + \mathbf{Adv}^{3 \cdot \mathrm{DQCSD}}(\lambda)\right)$$

	0000	



$$\mathsf{Adv}^{\mathsf{ind}}_{\mathcal{E},\mathcal{A}}(\lambda) \leq 2 \cdot \left(\mathsf{Adv}^{2 - \mathsf{DQCSD}}(\lambda) + \mathsf{Adv}^{3 - \mathsf{DQCSD}}(\lambda)\right)$$

	Parameters	

Outline

Preliminaries

3 Security

- Reduction Compliant
- Best Known Attacks

	Parameters	
	0000	

Reduction Compliant Parameters

	Ouroboros Parameters					
Instance	п	W	We	threshold	security	DFR
Low-I	5,851	47	94	30	80	$0.92 \cdot 10^{-5}$
Low-II	5,923	47	94	30	80	$2.3\cdot 10^{-6}$
Medium-I	13,691	75	150	45	128	$0.96 \cdot 10^{-5}$
Medium-II	14,243	75	150	45	128	$1.09 \cdot 10^{-6}$
Strong-I	40,013	147	294	85	256	$4.20 \cdot 10^{-5}$
Strong-II	40,973	147	294	85	256	$< 10^{-6}$

Table : Parameter sets for Ouroboros

	Parameters 0000	

Outline

3 Security

- arameters
- Reduction Compliant
- Best Known Attacks

	Parameters	
	0000	

Parameters wrt Best Know Attacks

	Ouroboros Optimized Parameters					
Instance	п	W	We	threshold	security	DFR
Low-I	4,813	41	123	27	80	$2.23 \cdot 10^{-5}$
Low-II	5,003	41	123	27	80	$2.60 \cdot 10^{-6}$
Medium-I	10, 301	67	201	42	128	$1.01 \cdot 10^{-4}$
Medium-II	10,837	67	201	42	128	$< 10^{-7}$
Strong-I	32,771	131	393	77	256	$< 10^{-4}$
Strong-II	33, 997	131	393	77	256	$< 10^{-7}$

Table : Optimized parameter sets for Ouroboros in Hamming metric

Conclusion		

- Ouroboros: a secure, simple, and efficient code-based key exchange protocol
- Efficient decoding through BitFlip
- Competitive parameters

⁻urther Improvements

Conclusion		

- Ouroboros: a secure, simple, and efficient code-based key exchange protocol
- Efficient decoding through BitFlip
- Competitive parameters

Conclusion		

- Ouroboros: a secure, simple, and efficient code-based key exchange protocol
- Efficient decoding through BitFlip
- Competitive parameters

Conclusion		

- Ouroboros: a secure, simple, and efficient code-based key exchange protocol
- Efficient decoding through BitFlip
- Competitive parameters

- Improve BitFlip threshold [CS16]
- \bullet Switch to Rank metric \rightarrow interlude
- Optimize implementation
- OpenSSL TLS integration

Conclusion		

- Ouroboros: a secure, simple, and efficient code-based key exchange protocol
- Efficient decoding through BitFlip
- Competitive parameters

- Improve BitFlip threshold [CS16]
- Switch to Rank metric \rightarrow interlude
- Optimize implementation
- OpenSSL TLS integration

Conclusion		

- Ouroboros: a secure, simple, and efficient code-based key exchange protocol
- Efficient decoding through BitFlip
- Competitive parameters

Further Improvements

- Improve BitFlip threshold [CS16]
- \bullet Switch to Rank metric \rightarrow interlude
- Optimize implementation
- OpenSSL TLS integration

Rank Metric Interlude (1/2)

Rank metric defined over (finite) extensions of finite fields

- \mathbb{F}_q a finite field with q a power of a prime.
- \mathbb{F}_{q^m} an extension of degree m of \mathbb{F}_q .
- \mathbb{F}_{q^m} can be seen as a vector space on \mathbb{F}_q .
- $\mathcal{B} = (b_1, ..., b_m)$ a basis of \mathbb{F}_{q^m} over \mathbb{F}_q .

Let
$$\mathbf{v} = (v_1, \dots, v_n)$$
 be a word of length n in \mathbb{F}_{q^m} .
Any coordinate $v_j = \sum_{i=1}^m v_{ij} b_i$ with $v_{ij} \in \mathbb{F}_q$.
 $\mathbf{v} = (v_1, \dots, v_n) \rightarrow \mathbf{V} = \begin{pmatrix} v_{11} & v_{12} & \dots & v_{1n} \\ v_{21} & v_{22} & \dots & v_{2n} \\ \vdots & \vdots & \ddots & \vdots \end{pmatrix}$

Rank weight of word

Preliminaries	Presentation of the Ouroboros protocol	Security	Parameters	Conclusion
000000	000000	00000	0000	
Rank Met	ric Interlude $(1/2)$			

- \mathbb{F}_q a finite field with q a power of a prime.
- \mathbb{F}_{q^m} an extension of degree m of \mathbb{F}_q .
- \mathbb{F}_{q^m} can be seen as a vector space on \mathbb{F}_q .
- $\mathcal{B} = (b_1, ..., b_m)$ a basis of \mathbb{F}_{q^m} over \mathbb{F}_q .

Let
$$\mathbf{v} = (v_1, \dots, v_n)$$
 be a word of length n in \mathbb{F}_{q^m} .
Any coordinate $v_j = \sum_{i=1}^m v_{ij} b_i$ with $v_{ij} \in \mathbb{F}_q$.
 $\mathbf{v} = (v_1, \dots, v_n) \rightarrow \mathbf{V} = \begin{pmatrix} v_{11} & v_{12} & \dots & v_{1n} \\ v_{21} & v_{22} & \dots & v_{2n} \\ \vdots & \vdots & \ddots & \vdots \end{pmatrix}$

Rank weight of word

000000	000000	00000	0000	
Daple Mat	ric Interlude (1/2)			

- \mathbb{F}_q a finite field with q a power of a prime.
- \mathbb{F}_{q^m} an extension of degree m of \mathbb{F}_q .

• \mathbb{F}_{q^m} can be seen as a vector space on \mathbb{F}_q .

• $\mathcal{B} = (b_1, ..., b_m)$ a basis of \mathbb{F}_{q^m} over \mathbb{F}_q .

Let $\mathbf{v} = (v_1, \dots, v_n)$ be a word of length n in \mathbb{F}_{q^m} . Any coordinate $v_j = \sum_{i=1}^m v_{ij} b_i$ with $v_{ij} \in \mathbb{F}_q$. $\mathbf{v} = (v_1, \dots, v_n) \rightarrow \mathbf{V} = \begin{pmatrix} v_{11} & v_{12} & \cdots & v_{1n} \\ v_{21} & v_{22} & \cdots & v_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ v_{m1} & v_{m2} & \cdots & v_{mn} \end{pmatrix}$

Rank weight of word

Rank Met	ric Interlude $(1/2)$		

- \mathbb{F}_q a finite field with q a power of a prime.
- \mathbb{F}_{q^m} an extension of degree m of \mathbb{F}_q .
- \mathbb{F}_{q^m} can be seen as a vector space on \mathbb{F}_q .

• $\mathcal{B} = (b_1, ..., b_m)$ a basis of \mathbb{F}_{q^m} over \mathbb{F}_q .

Let $\mathbf{v} = (v_1, \dots, v_n)$ be a word of length n in \mathbb{F}_{q^m} . Any coordinate $v_j = \sum_{i=1}^m v_{ij} b_i$ with $v_{ij} \in \mathbb{F}_q$. $\mathbf{v} = (v_1, \dots, v_n) \rightarrow \mathbf{V} = \begin{pmatrix} v_{11} & v_{12} & \cdots & v_{1n} \\ v_{21} & v_{22} & \cdots & v_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ v_{m1} & v_{m2} & \cdots & v_{mn} \end{pmatrix}$

Rank weight of word

Preliminaries 000000	Presentation of the Ouroboros protocol	Security 00000	Parameters 0000	Conclusion
Rank Met	ric Interlude (1/2)			

- \mathbb{F}_q a finite field with q a power of a prime.
- \mathbb{F}_{q^m} an extension of degree m of \mathbb{F}_q .
- \mathbb{F}_{q^m} can be seen as a vector space on \mathbb{F}_q .
- $\mathcal{B} = (b_1, ..., b_m)$ a basis of \mathbb{F}_{q^m} over \mathbb{F}_q .

Let
$$\mathbf{v} = (v_1, \dots, v_n)$$
 be a word of length n in \mathbb{F}_{q^m} .
Any coordinate $v_j = \sum_{i=1}^m v_{ij} b_i$ with $v_{ij} \in \mathbb{F}_q$.
 $\mathbf{v} = (v_1, \dots, v_n) \rightarrow \mathbf{V} = \begin{pmatrix} v_{11} & v_{12} & \dots & v_{1n} \\ v_{21} & v_{22} & \dots & v_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ v_{11} & v_{12} & \dots & v_{1n} \end{pmatrix}$

Rank weight of word

Rank Met	ric Interlude $(1/2)$		

- \mathbb{F}_q a finite field with q a power of a prime.
- \mathbb{F}_{q^m} an extension of degree m of \mathbb{F}_q .
- \mathbb{F}_{q^m} can be seen as a vector space on \mathbb{F}_q .
- $\mathcal{B} = (b_1, ..., b_m)$ a basis of \mathbb{F}_{q^m} over \mathbb{F}_q .

Let $\mathbf{v} = (v_1, \dots, v_n)$ be a word of length n in \mathbb{F}_{q^m} . Any coordinate $v_j = \sum_{i=1}^m v_{ij} b_i$ with $v_{ij} \in \mathbb{F}_q$. $\mathbf{v} = (v_1, \dots, v_n) \rightarrow \mathbf{V} = \begin{pmatrix} v_{11} & v_{12} & \cdots & v_{1n} \\ v_{21} & v_{22} & \cdots & v_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ v_{m1} & v_{m2} & \cdots & v_{mn} \end{pmatrix}$

Rank weight of word

Rank Met	ric Interlude $(1/2)$		

- \mathbb{F}_q a finite field with q a power of a prime.
- \mathbb{F}_{a^m} an extension of degree *m* of \mathbb{F}_a .
- \mathbb{F}_{a^m} can be seen as a vector space on \mathbb{F}_a .
- $\mathcal{B} = (b_1, ..., b_m)$ a basis of \mathbb{F}_{a^m} over \mathbb{F}_a .

Let
$$\mathbf{v} = (v_1, \dots, v_n)$$
 be a word of length n in \mathbb{F}_{q^m} .
Any coordinate $v_j = \sum_{i=1}^m v_{ij} b_i$ with $v_{ij} \in \mathbb{F}_q$.
 $\mathbf{v} = (v_1, \dots, v_n) \rightarrow \mathbf{V} = \begin{pmatrix} v_{11} & v_{12} & \dots & v_{1n} \\ v_{21} & v_{22} & \dots & v_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ v_{m1} & v_{m2} & \dots & v_{mn} \end{pmatrix}$

v has rank $r = \operatorname{rank}(\mathbf{v})$ iff the rank of $\mathbf{V} = (v_{ii})_{ii}$ is r. Equivalently rank(\mathbf{v}) = $r \Leftrightarrow v_i \in V_r \subset \mathbb{F}_{a^m}^n$ with dim(V_r)=r. . . .

Rank Met	ric Interlude (1/2)		

(- / *-)*

- \mathbb{F}_q a finite field with q a power of a prime.
- \mathbb{F}_{q^m} an extension of degree m of \mathbb{F}_q .
- \mathbb{F}_{q^m} can be seen as a vector space on \mathbb{F}_q .
- $\mathcal{B} = (b_1, ..., b_m)$ a basis of \mathbb{F}_{q^m} over \mathbb{F}_q .

Let
$$\mathbf{v} = (v_1, \dots, v_n)$$
 be a word of length n in \mathbb{F}_{q^m} .
Any coordinate $v_j = \sum_{i=1}^m v_{ij} b_i$ with $v_{ij} \in \mathbb{F}_q$.
 $\mathbf{v} = (v_1, \dots, v_n) \rightarrow \mathbf{V} = \begin{pmatrix} v_{11} & v_{12} & \dots & v_{1n} \\ v_{21} & v_{22} & \dots & v_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ v_{m1} & v_{m2} & \dots & v_{mn} \end{pmatrix}$

Rank weight of word

Rank Metric Interlude (2/2)

• Best Known Attacks have worse complexity in rank metric $(2^{\mathcal{O}(n^2)})$ than in Hamming metric $(2^{\mathcal{O}(n)})$

• Consequence: worse attacks \Rightarrow better parameters

	Ouroboros-R Parameters						
Instance	key size (bits)	п	т	q	\vee	security	decoding failure
Ouroboros-R-I	1,591	37	43	2		100	10^{-4}
Ouroboros-R-II	2,809		53	2		128	10^{-8}
Ouroboros-R-III	3,953	59	67	2	6	192	10^{-7}
Ouroboros-R-IV	5,293	67	79	2	7	256	10^{-5}
Ouroboros-R-V	5,618	53	53	4	6	256	10^{-10}

Table : Parameter sets for Ouroboros-R in rank metric.

Rank Metr	ric Interlude (2/2)		

- Best Known Attacks have worse complexity in rank metric $(2^{\mathcal{O}(n^2)})$ than in Hamming metric $(2^{\mathcal{O}(n)})$
- \bullet Consequence: worse attacks \Rightarrow better parameters

	Ouroboros-R Parameters						
Instance	key size (bits)	п	т	q	W	security	decoding failure
Ouroboros-R-I	1,591	37	43	2		100	10^{-4}
Ouroboros-R-II	2,809		53	2		128	10^{-8}
Ouroboros-R-III	3,953	59	67	2	6	192	10^{-7}
Ouroboros-R-IV	5,293	67	79	2	7	256	10^{-5}
Ouroboros-R-V	5,618	53	53	4	6	256	10^{-10}

Table : Parameter sets for Ouroboros-R in rank metric.

Rank Met	ric Interlude (2/2)		

- Best Known Attacks have worse complexity in rank metric $(2^{\mathcal{O}(n^2)})$ than in Hamming metric $(2^{\mathcal{O}(n)})$
- \bullet Consequence: worse attacks \Rightarrow better parameters

	Ouroboros-R Parameters						
Instance	key size (bits)	п	т	q	w	security	decoding failure
Ouroboros-R-I	1,591	37	43	2	5	100	10^{-4}
Ouroboros-R-II	2,809	53	53	2	5	128	10^{-8}
Ouroboros-R-III	3,953	59	67	2	6	192	10^{-7}
Ouroboros-R-IV	5,293	67	79	2	7	256	10^{-5}
Ouroboros-R-V	5,618	53	53	4	6	256	10^{-10}

Table : Parameter sets for Ouroboros-R in rank metric.

Conclusion		

- Ouroboros: a secure, simple, and efficient code-based key exchange protocol
- Efficient decoding through BitFlip
- Competitive parameters

Further Improvements

- Improve BitFlip threshold [CS16]
- \bullet Switch to Rank metric \rightarrow interlude
- Optimize implementation
- OpenSSL TLS integration

Conclusion		

- Ouroboros: a secure, simple, and efficient code-based key exchange protocol
- Efficient decoding through BitFlip
- Competitive parameters

Further Improvements

- Improve BitFlip threshold [CS16]
- \bullet Switch to Rank metric \rightarrow interlude
- Optimize implementation

• OpenSSL TLS integration

Conclusion		

- Ouroboros: a secure, simple, and efficient code-based key exchange protocol
- Efficient decoding through BitFlip
- Competitive parameters

Further Improvements

- Improve BitFlip threshold [CS16]
- \bullet Switch to Rank metric \rightarrow interlude
- Optimize implementation
- OpenSSL TLS integration

Thanks!

Paper available @ http://unil.im/ouroboros

Thanks!

Carlos Aguilar Melchor, Olivier Blazy, Jean Christophe Deneuville, Philippe Gaborit, and Gilles Zémor.

Efficient encryption from random quasi-cyclic codes. *CoRR*, abs/1612.05572, 2016.

Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and

Peter Schwabe.

Post-quantum key exchange - A new hope.

In Thorsten Holz and Stefan Savage, editors, 25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016, pages 327-343. USENIX Association, 2016.

Michael Alekhnovich.

More on average case vs approximation complexity. In 44th Symposium on Foundations of Computer Science (FOCS 2003), 11-14 October 2003, Cambridge, MA, USA, Proceedings, pages 298–307, 2003.

Joppe W. Bos, Craig Costello, Michael Naehrig, and Douglas Stebila.

Post-quantum key exchange for the TLS protocol from the ring learning with errors problem.

In 2015 IEEE Symposium on Security and Privacy, pages 553–570. IEEE Computer Society Press, May 2015.

Julia Chaulet and Nicolas Sendrier.

Worst case qc-mdpc decoder for mceliece cryptosystem.

In Information Theory (ISIT), 2016 IEEE International Symposium on, pages 1366–1370. IEEE, 2016.

Jintai Ding.

New cryptographic constructions using generalized learning with errors problem.

Cryptology ePrint Archive, Report 2012/387, 2012.

Jintai Ding, Xiang Xie, and Xiaodong Lin.

A simple provably secure key exchange scheme based on the learning with errors problem.

Cryptology ePrint Archive, Report 2012/688, 2012.

Javier Herranz, Dennis Hofheinz, and Eike Kiltz.

KEM/DEM: Necessary and sufficient conditions for secure hybrid encryption.

Cryptology ePrint Archive, Report 2006/265, 2006.

Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier,

and Paulo SLM Barreto.

Mdpc-mceliece: New mceliece variants from moderate density parity-check codes. In Information Theory Proceedings (ISIT), 2013 IEEE International Symposium on, pages 2069–2073. IEEE, 2013.

NIST

NIST - National Institute of Standards and

Technology.

Submission requirements and evaluation criteria for the post-quantum cryptography standardization process (call for proposal), December 2016.

Chris Peikert.

Lattice cryptography for the internet.

In Michele Mosca, editor, Post-Quantum Cryptography - 6th International Workshop, PQCrypto 2014, Waterloo, ON, Canada, October 1-3, 2014. Proceedings, volume 8772 of Lecture Notes in Computer Science, pages 197–219. Springer, 2014.

Nicolas Sendrier.

Encoding information into constant weight words. In Information Theory, 2005. ISIT 2005. Proceedings. International Symposium on, pages 435–438. IEEE, 2005.

