On a Generalisation of Dillon's APN Permutation

Anne Canteaut

Sébastien Duval Sebastien.Duval@inria.fr Léo Perrin leo.perrin@uni.lu

April 24, 2017

Introduction	Generalisation	Properties	Walsh Spectrum and Table of Differences	Conclusion
		-		

Table of Contents

- 2 Generalisation of Butterflies
- Properties of Generalised Butterflies
 - Walsh Spectrum and Table of Differences

5 Conclusion

Introduction	Generalisation	Properties	Walsh Spectrum and Table of Differences	Conclusion
		S-	Box	

Definition 1 (S-Box)

We will call *Substitution-Box* or *S-Box* any mapping from \mathbb{F}_2^m into \mathbb{F}_2^n , $n, m \ge 0$.

Main Desirable Properties

- Permutation ($\Rightarrow n = m$)
- Non-linear ($\Rightarrow n$ small)
- Resistant to differential attacks
- Resistant to linear attacks
- High algebraic degree

Differential Properties

Definition 2 (Differential Uniformity)

Let *F* be a function over \mathbb{F}_2^n . The table of differences of *F* is:

$$\delta_{\mathsf{F}}(\mathbf{a}, \mathbf{b}) = \#\{\mathbf{x} \in \mathbb{F}_2^n | \, \mathsf{F}(\mathbf{x} \oplus \mathbf{a}) = \mathsf{F}(\mathbf{x}) \oplus \mathbf{b}\}.$$

Moreover, the differential uniformity of *F* is $\delta(F) = \max_{a \neq 0, b} \delta_F(a, b).$ F \downarrow F \downarrow F \downarrow F \downarrow F \downarrow F \downarrow Y $Y \oplus b$

- F is resistant against differential attacks if $\delta(F)$ is small
- F is called APN if $\delta(F) = 2$

Introduction	Generalisation	Properties	Walsh Spectrum and Table of Differences	Conclusion

The Big APN Problem

The Big APN Problem

We know how to get:

- APN functions on \mathbb{F}_2^n ,
- APN permutations on \mathbb{F}_2^n , *n* odd,
- permutations with $\delta = 4$ on \mathbb{F}_2^n .

Are there any APN permutations on \mathbb{F}_2^n , *n* even ?

2009: Dillon S-Box

Browning, Dillon, McQuistan, Wolfe: APN permutation on \mathbb{F}_2^6 .

The Still Big APN Problem

Are there any other APN permutations on \mathbb{F}_2^n , *n* even ?

A. Canteaut, S. Duval and L. Perrin ()

On a Generalisation of Dillon's APN Permutation

Introduction	Generalisation	Properties	Walsh Spectrum and Table of Differences	Conclusion
00000000				

Linear Properties

Definition 3 (Linearity)

Let *F* be a function over \mathbb{F}_2^n . The table of linear biases of *F* is:

$$\lambda_F(a,b) = \sum_{x \in \mathbb{F}_2^n} (-1)^{a \cdot x \oplus b \cdot F(x)}.$$

Moreover, the linearity of F is

$$\mathcal{L}(F) = \max_{a,b\neq 0} |\lambda_F(a,b)|.$$

F is resistant to linear attacks if $\mathcal{L}(F)$ is small

A. Canteaut, S. Duval and L. Perrin ()

On a Generalisation of Dillon's APN Permutation

Introduction	Generalisation	Properties	Walsh Spectrum and Table of Differences	Conclusion

Algebraic Degree

Definition 4 (Univariate degree vs algebraic degree)

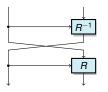
Let *F* be a function from \mathbb{F}_2^n into \mathbb{F}_2^n .

The *algebraic degree* (aka multivariate degree) of *F* is the maximal degree of the algebraic normal forms of its coordinates.

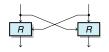
The *univariate degree* of *F* is the degree of the univariate polynomial in $\mathbb{F}_{2^n}[X]$ representing *F* when it is identified with a function from \mathbb{F}_{2^n} into itself.

The algebraic degree of the univariate polynomial $x \mapsto x^e$ of \mathbb{F}_{2^n} is the Hamming weight of the binary expansion of *e*.

Butterflies: Definitions (1) [Perrin et al.]



H_R: Open Butterfly



V_R: Closed Butterfly

 R_k : $x \mapsto R(x, k)$ permutation $\forall k$.

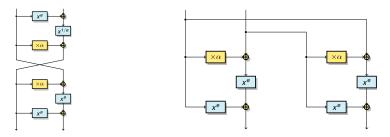
Open Butterfly and Closed Butterfly are CCZ-equivalent \Rightarrow share the same sets

$$\{\delta_{\mathsf{H}_{\mathsf{R}}}(\boldsymbol{a},\,\boldsymbol{b})\}_{\boldsymbol{a},\boldsymbol{b}} = \{\delta_{\mathsf{V}_{\mathsf{R}}}(\boldsymbol{a},\,\boldsymbol{b})\}_{\boldsymbol{a},\boldsymbol{b}},$$

$$\{\mathcal{L}_{\mathsf{H}_{R}}(a, b)\}_{a,b} = \{\mathcal{L}_{\mathsf{V}_{R}}(a, b)\}_{a,b}.$$

In particular, $\delta(H_R) = \delta(V_R)$ and $\mathcal{L}(H_R) = \mathcal{L}(V_R)$.

$$R_k[e, \alpha] = (x \oplus \alpha k)^e \oplus k^e$$
, with $gcd(e, 2^n - 1) = 1$.



H_R: Open Butterfly

V_R: Closed Butterfly

Most interesting case for study: $e = 3 \times 2^{t}$. Then *R* is **quadratic**, and V_{*R*} is **quadratic**.

A. Canteaut, S. Duval and L. Perrin ()

Introduction	Generalisation	Properties	Walsh Spectrum and Table of Differences	Conclusion
000000000				

Butterflies: Properties

Theorem 1 (Properties of Butterflies)

- Let $e = 3 \times 2^t$, $\alpha \notin \{0, 1\}$, n odd.
 - ► $\delta(\mathsf{H}_R) \leq 4, \, \delta(\mathsf{V}_R) \leq 4,$
 - V_R is quadratic,
 - H_R has algebraic degree n + 1.

Theorem 2 (APN Butterflies)

If n = 3 and $x \mapsto x^e$ is APN, then H_R is an APN permutation (affine equivalent to the Dillon permutation).

Open Questions of [Perrin et al.]

- Nonlinearity/Linearity of H_R (and V_R),
- Can we find α such that H_R is APN for some n > 6 ?

Introduction	Generalisation	Properties	Walsh Spectrum and T
	•••		

Table of Differences

Conclusion

Generalised Butteflies: Definitions

 $H_{\alpha,\beta}$: Open Butterfly

 $V_{\alpha,\beta}$: Closed Butterfly

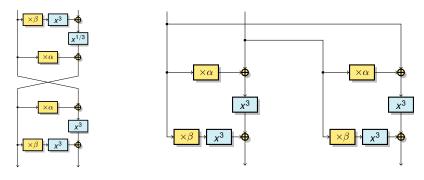
Degree restriction:

- $R_{v}: x \mapsto R(x, y)$ permutation $\forall y$.
- Degree of R is at most 3:
- Then *R* can be written:

$$\mathsf{R}(x,y) = (x \oplus \alpha y)^3 \oplus \beta y^3$$

with $\alpha, \beta \in \mathbb{F}_2^n$.

Generalised Butterflies: Definitions (2)



 $H_{\alpha,\beta}$: Open Butterfly

 $V_{\alpha,\beta}$: Closed Butterfly

Introduction	Generalisation ○○●	Properties	Walsh Spectrum and Table of Differences	Conclusion
		Equiv	alences	

- $H_{\alpha,\beta}$ and $V_{\alpha,\beta}$ are CCZ-equivalent.
- ▶ When $\alpha = 1$, $H_{\alpha,\beta}$ is equivalent to a 3-round Feistel network.
- Butterfly with $e = 3 \times 2^{t}$ is affine-equivalent to Butterfly with e = 3.
- ► $V_{\alpha,\beta}$ and V_{α^2,β^2} are affine-equivalent.
- ▶ If $\alpha \neq 1$, $V_{\alpha,\beta}$ and $V_{\alpha,\beta^{-1}(1+\alpha)^6}$ are affine-equivalent.

Introduction 000000000	Generalisation	Properties ●○○○	Walsh Spectrum and Table of Differences	Conclusion
	_			

Property of Quadratic Functions

Property 1 (Linearity of Quadratic Functions)

Let f be a quadratic Boolean function of n variables.

 $\mathsf{LS}(f) = \{ a \in \mathbb{F}_2^n : D_a f \text{ is constant} \}$

Then $\mathcal{L}(f) = 2^{\frac{n+s}{2}}$, with $s = \dim LS(f)$.

Moreover, the Walsh coefficients of f only the values $\pm 2^{\frac{n+s}{2}}$ and 0.

			Droportion	
Introduction	Generalisation	Properties	Walsh Spectrum and Table of Differences	Conclusion

Linear Properties

Theorem 3

Let n > 1 be an odd integer and (α, β) be a pair of nonzero elements in \mathbb{F}_{2^n} .

Introduction	Generalisation	Properties	Walsh Spectrum and Table of Differences	Conclusion
		0000		

Differential Properties

Theorem 4 (Differential uniformity)

Let n > 1 odd, $\alpha, \beta \in \mathbb{F}_{2^n} \setminus \{0\}$. Then:

• If $\beta \neq (1 + \alpha)^3$, $\delta(\mathsf{H}_{\alpha,\beta}) \leq 4$.

• If
$$\beta = (1 + \alpha)^3$$
, $\delta(\mathsf{H}_{\alpha,\beta}) = 2^{n+1}$.

Theorem 5 (APN Condition)

Let $\alpha \neq 0, 1$. $H_{\alpha,\beta}$ is APN if and only if:

$$\beta \in \{(\alpha + \alpha^3), (\alpha^{-1} + \alpha^3)\}$$
 and $\operatorname{Tr}(\mathcal{A}_{\alpha}(e)) = 1, \forall e \notin \{0, \alpha, 1/\alpha\}$

where $\mathcal{A}_{lpha}(e) = rac{e lpha (1+lpha)^2}{(1+lpha e)(lpha+e)^2}.$

This condition implies that n = 3.

Introduction	Generalisation	Properties	Walsh Spectrum and Table of Differences	Conclusion	
Algebraic Degree					

Theorem 6

Let α and β be two nonzero elements in \mathbb{F}_{2^n} .

 $H_{\alpha,\beta}$ has an algebraic degree equal to n or n + 1.

It is equal to n if and only if

$$(1 + \alpha\beta + \alpha^4)^3 = \beta(\beta + \alpha + \alpha^3)^3.$$

Introduction	Generalisation	Properties	Walsh Spectrum and Table of Differences ●○○	Conclusion	
	$\alpha = 1$	· 3-round	Feistel Network		

Proposition 1

For $\alpha = \beta = 1$, the difference distribution tables of the butterflies V_{1,1} and H_{1,1} contain the values 0 and 4 only.

Introduction	Generalisation	Properties	Walsh Spectrum and Table of Differences ●●	Conclus

Generalised Butterflies

Corollary 7 (Walsh and differential spectra of generalised butterflies)

Let α and β be two nonzero elements in \mathbb{F}_{2^n} such that $\beta \neq (1 + \alpha)^3$. • Walsh spectrum:

$$\left|\widehat{\mathsf{H}_{\alpha,\beta}}(u,v)\right| = \begin{cases} 0, & 3 \times 2^{2n-2}(2^n-1)(2^n+1-C) \text{ times} \\ 2^n, & 2^{2n}(2^n-1)C \text{ times} \\ 2^{n+1}, & 2^{2n-2}(2^n-1)(2^n+1-C) \text{ times}. \end{cases}$$

where $(2^n - 1)C$ is the number of bent components of $V_{\alpha,\beta}$.

Table of differences:

$$\delta_{\mathsf{H}_{\alpha,\beta}}(a,b) = \begin{cases} 2, & 2^{2n-2}(2^n-1) \times 3C \text{ times} \\ 4, & 2^{2n-3}(2^n-1)(2^{n+2}+4-3C) \text{ times} \end{cases}$$

A. Canteaut, S. Duval and L. Perrin ()

Introduction 000000000	Generalisation	Proj	perties		Wals ○○●		trum an	d Table of Differences	Conclusion
New Permutations									
Value of <i>C</i> for a Butterfly on 6 bits (\mathbb{F}_{2^3} defined by the primitive element <i>a</i> such that $a^3 + a + 1 = 0$).									
	$\alpha \backslash \beta$	1	а	a ²	a ³	a^4	a^5	a^6	
	1	0	4	4	4	4		4	
	а	6	2	0	2 0	6	0	0	
	a^3	2	4	2	0	2	4	2	

These permutations are new:

- ▶ The value of *C* determines the differential and Walsh spectra,
- The case $\beta = 1$ does not include all possible values for *C* \Rightarrow the generalisation gives new permutations,
- Differential/Linear spectra are different from any other studied permutations, for example:
 - For n = 3, the number of 4 in the differential spectrum is in $\{0, 336, 672, 1008\},\$
 - Gold and Kasami permutations: number of 4 = 1008,
 - Inverse mapping: number of 4 = 63,

Introduction 000000000	Generalisation	Properties 0000	Walsh Spectrum and Table of Differences	Conclusion				
Conclusion								

This work in brief:

- We answered the 2 open questions from Perrin et al.,
- We identified a new family of 2n bit-functions, $n \ge 3$ odd with:
 - differential uniformity 4,
 - linearity 2ⁿ⁺¹,
 - a simple representation (easier implementation and analysis),
 - the permutation from Dillon et al. included.
- We proved that this natural generalisation does not contain any new APN permutation. :-(

Questions ?