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Number fields

K number field = finite extension of Q = 3T € Z[X] monic s.t.
K~ Q[X]/(T).

T is a defining polynomial of K.
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Number fields

K number field = finite extension of Q = 3T € Z[X] monic s.t.
K~ Q[X]/(T).

T is a defining polynomial of K.

Two interesting structures:

@ Group of ideals
Quotient by principal ideals = class group Cl(Ok)

@ Group of units
Finitely generated = fundamental units

Aim: Compute the structure of the class group.
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Class Group Computations General strategy for computation
Conditional Improvement

Outline

@ Class Group Computations
@ General strategy for computation
@ Conditional Improvement
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Class Group Computations General strategy for computation
Conditional Improvement

Subexponential L-notation : Ln(0,¢) = (log N)® Ly (1,¢) ~ N©

Ly (o, c) = exp ((c+ o(1))(log N)“(log log N)lfa) .
. . . 1
1969 Shanks: quadratic number fields in O(|Ak|5).

1989 Hafner and McCurley: imaginary quadratic number fields in

L|AK\(%7\/§)'

1990 Buchmann: all number fields with fixed degree in
Liag|(5,1.7).

2014 Biasse and Fieker: all number fields in L|AK\(% + ¢) in general
and L|AK\(%) if n < log(|Ag]|)%/4=.

2014 Biasse and Fieker: number fields defined by a good polynomial
in Liag(a), 1<a<i.
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Class Group Computations General strategy for computation
Conditional Improvement

Index calculus

O Factor base
Fix a factor base composed of small elements.

@ Relation collection
Collect some relations between those small elements,
corresponding to linear equations.

© Linear algebra

Deduce the sought result performing linear algebra on the
system built.
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Class Group Computations General strategy for computation
Conditional Improvement

The factor base

B = {prime ideals in Ok of norm below B}

B determined so that B generates the whole class group.

Minkowski’s bound: every class contains an ideal of norm smaller

than AN
n!
MK =V ’A]K| ( ) n—n

™

Bach’s bound: assuming GRH, classes of ideals of norm less than
12(log | Ak |)? generate the class group.
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Class Group Computations General strategy for computation
Conditional Improvement

The factor base

B = {prime ideals in Ok of norm below B}

B determined so that B generates the whole class group.

Minkowski’s bound: every class contains an ideal of norm smaller

than AN
n!
MK =V ’A]K| ( ) n—n

™

Bach’s bound: assuming GRH, classes of ideals of norm less than
12(log | Ak |)? generate the class group.

Practically
B = Liay(B, ).
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Class Group Computations General strategy for computation
Conditional Improvement

Relation collection

B=(p1," ,pN)
Surjective morphism:

ZN 2T T Q(O)

(e1,---yen) = TLipy = TLipd“

Cl(Ok) = Z/ {(e1, -+ ,en) € ZV | T, 95 = (a)Ox}
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Class Group Computations General strategy for computation
Conditional Improvement

Relation collection

B: (p17"' 7pN)
Surjective morphism:
ZN 2T T Q(O)
(e1,--+,en) — TLipy — ILp"

Cl(Ok) = Z/ {(e1, -+ ,en) € ZV | T, 95 = (a)Ox}

Idea:
@ Pick at random A =[], p;".
@ Find a reduced ideal A’ in the same class.
@ If A’ splits on B (< A’ =[], p;") then
AA)T =T, p;’i_vg is principal.
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Class Group Computations General strategy for computation
Conditional Improvement

Linear algebra

@ Relations stored in a matrix of size about N x N.

@ Structure of the class group given by the Smith Normal Form
of the matrix.

o First compute Hermite Normal Form with a premultiplier
because we need kernel vectors.

@ Storjohann and Labahn algorithm, runtime in N«+1
(2 < w < 3 exponent of matrix multiplication)
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Class Group Computations General strategy for computation
Conditional Improvement

Verification

We find a tentative class group H, but the class group Cl(Ok) may
be only a quotient of H.
= Need an approximation of the class number hx = |Cl(Ok)|.
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Class Group Computations General strategy for computation
Conditional Improvement

Verification

We find a tentative class group H, but the class group Cl(Ok) may
be only a quotient of H.

= Need an approximation of the class number hx = |Cl(Ok)|.

Class number formula 4+ Euler Product:

_ep. Wk VIAK]
hKRegK =EP. W
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Class Group Computations General strategy for computation
Conditional Improvement

Verification

We find a tentative class group H, but the class group Cl(Ok) may
be only a quotient of H.
= Need an approximation of the class number hy = |Cl(Ok).

Class number formula 4+ Euler Product:

_ep. Wk VIAK]
hKRegK =EP. W

From the relations, we can also deduce a candidate for an
approximation of Regj and perform the verification step.
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Class Group Computations General strategy for computation
Conditional Improvement

Subexponential L-notation : Ln(0,¢) = (log N)® Ly (1,¢) ~ N©

Ly (o, c) = exp ((c+ o(1))(log N)“(log log N)lfa) .
. . . 1
1969 Shanks: quadratic number fields in O(|Ak|5).

1989 Hafner and McCurley: imaginary quadratic number fields in

L|AK\(%7\/§)'

1990 Buchmann: all number fields with fixed degree in
Liag|(5,1.7).

2014 Biasse and Fieker: all number fields in L|AK\(% + ¢) in general
and L|AK\(%) if n < log(|Ag]|)%/4=.

2014 Biasse and Fieker: number fields defined by a good polynomial
in Liag(a), 1<a<i.
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Class Group Computations General strategy for computation
Conditional Improvement

What is a good polynomial 7

We want a polynomial that defines a fixed number field:
o The degree is fixed,

o We want the coefficients as small as possible.
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Class Group Computations General strategy for computation
Conditional Improvement

What is a good polynomial 7

We want a polynomial that defines a fixed number field:
o The degree is fixed,

o We want the coefficients as small as possible.

Definition

Let T = 5" ap X* € Z[X]. The height of T'is defined as the maximal
norm of its coefficients, namely

H(T)= max lag|.
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Class Group Computations General strategy for computation
Conditional Improvement

Classes from Biasse and Fieker work

Letn07d0>Oand0<o¢<%

7) deg(T) —n0(10g|AK|) (1+0(1)) }

C"°’d°’°‘={K=Q[X log H(T) = do(log | Ax])1=*(1 + o(1))

If we know such a good polynomial, there exists an algorithm with
runtime Lz, |(a) for class group computation with

1l —«
a=max | o .
T2
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Class Group Computations General strategy for computation
Conditional Improvement

Our results [GJ16]

Let ng,dg >0, 0<a<land 1 —a<~vy<I1.

e = = B e < )
0,do,c, ( IOgH( )<d0(10g|AK|) (IOgloglAKDl—’Y
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Class Group Computations General strategy for computation
Conditional Improvement

Our results [GJ16]

Let ng,dg >0, 0<a<land 1 —a<~vy<I1.

e = = B e < )
0,do,c, ( IOgH( )<d0(10g|AK|) (10g10g|AK|)1—'Y

Proposition

If there exists a polynomial 7" such that K € Dy, 4.a,v, We find the
minimal one in time Lja, ().
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Class Group Computations General strategy for computation
Conditional Improvement

Our results [GJ16]

Let ng,dg >0, 0<a<land 1 —a<~vy<I1.

Doty = 4 & = QXD den(T) <o (ki)
ot (T) " 1og H(T) < dy(log |Ak|)" (loglog | Ag|)

If there exists a polynomial 7" such that K € Dy, 4.a,v, We find the
minimal one in time Lja, ().

Under GRH and smoothness heuristics, for every K € Dy gy a4,
o < 1, there exists an La, (a) algorithm for class group computation
with
a = max (a, Z) .
2



Class Group Computations

Conditional Improvement

State of the art [BF14]

General case:

S

W= = Wi

0 |

W=
[N
wino
N[
—

First general subexponential algorithm.
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Class Group Computations

Conditional Improvement

State of the art [BF14]

Special case:

0 |

W=
[N
wino
N[
—

Only if K is defined by T such that H(T) = Lja,| (1 — ).



Class Group Computations

Conditional Improvement

Our work [GJ16]

General case:

S

W= = Wi

0 |

W=
[N
wino
N[
—

Without any condition.



The Principal Ideal Problem (PIP)
Application to Cryptography Our descent algorithm

Outline

© Application to Cryptography
@ The Principal Ideal Problem (PIP)
@ Our descent algorithm
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The Principal Ideal Problem (PIP)
Application to Cryptography Our descent algorithm

The Principal Ideal Problem

The Principal Ideal Problem (PIP) consists in finding a
generator of an ideal, assuming it is principal.
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The Principal Ideal Problem

The Short Principal Ideal Problem (SPIP) consists in finding a short
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The Principal Ideal Problem

The Short Principal Ideal Problem (SPIP) consists in finding a short
generator of an ideal, assuming it is principal.

o Base of several cryptographical schemes ([SV10],[GGH13])
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The Principal Ideal Problem (PIP)
Application to Cryptography Our descent algorithm

The Principal Ideal Problem

The Short Principal Ideal Problem (SPIP) consists in finding a short
generator of an ideal, assuming it is principal.

o Base of several cryptographical schemes ([SV10],[GGH13])

@ Two distinct phases:
@ Given the Z-basis of the ideal a = (g), find a — not
necessarily short — generator g’ = g - u for a unit .
@ From g’, find a short generator of the ideal.
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The Principal Ideal Problem (PIP)
Application to Cryptography Our descent algorithm

The Principal Ideal Problem

The Short Principal Ideal Problem (SPIP) consists in finding a short
generator of an ideal, assuming it is principal.

o Base of several cryptographical schemes ([SV10],[GGH13])

@ Two distinct phases:

@ Given the Z-basis of the ideal a = (g), find a — not
necessarily short — generator g’ = g - u for a unit .
@ From g’, find a short generator of the ideal.

Campbell, Groves, and Sheperd (2014) found a solution the second
point for power-of-two cyclotomic fields. Cramer, Ducas, Peikert,
and Regev (2016) provided a proof and an extension to
prime-power cyclotomic fields.



The Principal Ideal Problem (PIP)
Application to Cryptography Our descent algorithm

FHE scheme — Smart and Vercauteren PKC 2010

Key Generation:
@ Fix the security parameter N = 2™,

@ Let F(X) = X~ +1 be the polynomial defining the
cyclotomic field K = Q((an).

© Set G(X)=1+2-5(X),
for S(X) of degree N — 1 with coefficients in {—2”, 2”},
such that the norm N ((G(Can))) is prime.

Q Set g = G(an) € Ok.

© Return the secret key sk = g and the public key
pk = HNF((g)).
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The Principal Ideal Problem (PIP)
Application to Cryptography Our descent algorithm

FHE scheme — Smart and Vercauteren PKC 2010

Key Generation:
@ Fix the security parameter N = 2™,

@ Let F(X) = X~ +1 be the polynomial defining the
cyclotomic field K = Q((an).

© Set G(X)=1+2-5(X),
for S(X) of degree N — 1 with coefficients in {—2”, 2”},
such that the norm N ((G(Can))) is prime.

Q Set g = G(an) € Ok.

© Return the secret key sk = g and the public key
pk = HNF((g)).

Our goal: Recover the secret key from the public key.
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The Principal Ideal Problem (PIP)
Application to Cryptography Our descent algorithm

Outline of the algorithm [BEFGK17]

@ Perform a reduction from the cyclotomic field to its totally real
subfield, allowing to work in smaller dimension.

@ Then a descent makes the size of involved ideals decrease.

© Collect relations and run linear algebra to construct small
ideals and a generator.

@ Eventually run the derivation of the small generator from a
bigger one.
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The Principal Ideal Problem (PIP)
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The descent strategy

Input ideal — Norm arbitrary large
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The descent strategy

Input ideal — Norm arbitrary large

Initial reduction — Norm: Lja (%)
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The descent strategy

Input ideal — Norm arbitrary large

Initial reduction — L|a,| (1)-smooth
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The Principal Ideal Problem (PIP)
Application to Cryptography Our descent algorithm

The descent strategy

a’ Input ideal — Norm arbitrary large
al a; \ a,, Initial reduction — L|a,| (1)-smooth
a? a2 ar, First step — Norm: Lz, (g)
Cl? a; \ ’ ais
|
o
al —1
all al2 \ ’ aiu
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The Principal Ideal Problem (PIP)
Application to Cryptography Our descent algorithm

The descent strategy

a’ Input ideal — Norm arbitrary large
al a; \ a,, Initial reduction — L|a,| (1)-smooth
a? a2 ar, First step — Lay (%)—smooth
@ al \ ab, Second step — Norm: L, (3)
I
o
al -1
al /a/ \ al
1 2 ny
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The descent strategy

a’ Input ideal — Norm arbitrary large
al a; \ a,, Initial reduction — L|a,| (1)-smooth
a? a2 ar, First step — Lay (%)—smooth
@ al \ ab, Second step — Lja,| (2)-smooth
|
o
al —1
al /a/ \ al
1 2 ny
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The Principal Ideal Problem (PIP)
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The descent strategy

a’ Input ideal — Norm arbitrary large
ap ay ---oa Initial reduction — Lz, (1)-smooth
a? a2 \ ar, First step — Lay (%)—smooth
a a \ a? Second step — Lz, (2)-smooth
1 O ng |[Ax| \8
I
o
a ! Last but one step — Norm: ~ L, (1)
all al2 \ ’ aiu
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The descent strategy

a’ Input ideal — Norm arbitrary large
ap ay ---oa Initial reduction — Lz, (1)-smooth
a? a2 \ ar, First step — Lay (%)—smooth
al ay oA, Second step — Lja,| (2)-smooth
|
o
al—! Last but one step — ~ Lz (%)—smooth
all al2 \ ’ aiu
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The Principal Ideal Problem (PIP)
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The descent strategy

a’ Input ideal — Norm arbitrary large
a; al \ coan Initial reduction — Lz, (1)-smooth
az a ... oal, First step — Lja, | (2)-smooth
a a \ a? Second step — Lz, (2)-smooth
1 2 ns |A]K| 8
|
o
a~! Last but one step — ~ Lz (%)—smooth
al al ---oa Last step — Norm: L, (1)
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The descent strategy

a’ Input ideal — Norm arbitrary large
a; al \ coan Initial reduction — Lz, (1)-smooth
az a ... oal, First step — Lja, | (2)-smooth
a a \ a? Second step — Lz, (2)-smooth
1 2 ns |A]K| 8
|
o
a~! Last but one step — ~ Lz (%)—smooth
ai a, - oal Last step — Lja,| (3)-smooth

Alexandre Gélin Class Group & Cryptography



The Principal Ideal Problem (PIP)
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The descent strategy

a’ Input ideal — Norm arbitrary large
a, a, \ a,. Initial reduction — L|a,| (1)-smooth
al al \ ar, First step — Loy (%)—smooth
ad al \ a,, Second step — Ljay| (2)-smooth
|
o
al ! Last but one step — &~ Lja, | (3)-smooth
a ah -, Last step — Lja,| (3)-smooth ®
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The Principal Ideal Problem (PIP)
Application to Cryptography Our descent algorithm

Solution for Lja,| (3)-smooth ideals

Input: Bunch of prime ideals of norm below B = Lja,| (3)
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The Principal Ideal Problem (PIP)
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Solution for Lja,| (3)-smooth ideals

Input: Bunch of prime ideals of norm below B = Lja,| (3)

@ As for class group computations, factor base: set of all prime
ideals with norm below B {p1, - ,pn}
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Solution for Lja,| (3)-smooth ideals

Input: Bunch of prime ideals of norm below B = Lja,| (3)

@ As for class group computations, factor base: set of all prime
ideals with norm below B {p1, - ,pn}

@ Construction of a full-rank matrix of relations M using the
same process (relation collection)
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Solution for Lja,| (3)-smooth ideals

Input: Bunch of prime ideals of norm below B = Lja,| (3)
@ As for class group computations, factor base: set of all prime
ideals with norm below B {p1, - ,pn}

@ Construction of a full-rank matrix of relations M using the
same process (relation collection)

@ A N-dimensional vector Y including all the valuations of the
smooth ideals in the p;
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The Principal Ideal Problem (PIP)
Application to Cryptography Our descent algorithm

Solution for Lja,| (3)-smooth ideals

Input: Bunch of prime ideals of norm below B = Lja,| (3)
@ As for class group computations, factor base: set of all prime
ideals with norm below B {p1, - ,pn}

@ Construction of a full-rank matrix of relations M using the
same process (relation collection)

@ A N-dimensional vector Y including all the valuations of the
smooth ideals in the p;

@ A solution X of M X =Y provides a generator of the product
of the Ljay (%)—smooth ideals
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The Principal Ideal Problem (PIP)
Application to Cryptography Our descent algorithm

Merci
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