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Number fields

K number field ⇒ finite extension of Q ⇒ ∃T ∈ Z[X] monic s.t.

K ' Q[X]/(T ).

T is a defining polynomial of K.

Two interesting structures:
Group of ideals

Quotient by principal ideals ⇒ class group Cl(OK)

Group of units

Finitely generated ⇒ fundamental units

Aim: Compute the structure of the class group.
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General strategy for computation
Conditional Improvement

Subexponential L-notation : LN (0, c) ≈ (logN)c LN (1, c) ≈ Nc

LN (α, c) = exp
(
(c + o(1))(logN)

α
(log logN)

1−α
)
.

1969 Shanks: quadratic number fields in O(|∆K|
1
5 ).

1989 Hafner and McCurley: imaginary quadratic number fields in
L|∆K|(

1
2 ,
√

2).

1990 Buchmann: all number fields with fixed degree in
L|∆K|(

1
2 , 1.7).

2014 Biasse and Fieker: all number fields in L|∆K|(
2
3 + ε) in general

and L|∆K|(
1
2) if n ≤ log(|∆K|)3/4−ε.

2014 Biasse and Fieker: number fields defined by a good polynomial
in L|∆K|(a), 1

3 ≤ a <
1
2 .
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Index calculus

1 Factor base
Fix a factor base composed of small elements.

2 Relation collection
Collect some relations between those small elements,
corresponding to linear equations.

3 Linear algebra
Deduce the sought result performing linear algebra on the
system built.
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The factor base

B = {prime ideals in OK of norm below B}

B determined so that B generates the whole class group.

Minkowski’s bound: every class contains an ideal of norm smaller
than

MK =
√
|∆K|

(
4

π

)r2 n!

nn
.

Bach’s bound: assuming GRH, classes of ideals of norm less than
12(log |∆K|)2 generate the class group.

Practically
B = L|∆K|(β, cb).
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Relation collection

B = (p1, · · · , pN )

Surjective morphism:

ZN φ−→ I π−→ Cl(OK)
(e1, · · · , eN ) 7−→

∏
i p
ei
i 7−→

∏
i[pi]

ei

Cl(OK) ' ZN/
{

(e1, · · · , eN ) ∈ ZN |
∏
i p
ei
i = (α)OK

}

Idea:
1 Pick at random A =

∏
i p
vi
i .

2 Find a reduced ideal A′ in the same class.
3 If A′ splits on B (⇔ A′ =

∏
i p
v′i
i ) then

A(A′)−1 =
∏
i p
vi−v′i
i is principal.
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Linear algebra

Relations stored in a matrix of size about N ×N .

Structure of the class group given by the Smith Normal Form
of the matrix.

First compute Hermite Normal Form with a premultiplier
because we need kernel vectors.

Storjohann and Labahn algorithm, runtime in Nω+1

(2 ≤ ω ≤ 3 exponent of matrix multiplication)
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Verification

We find a tentative class group H, but the class group Cl(OK) may
be only a quotient of H.
⇒ Need an approximation of the class number hK = |Cl(OK)|.

Class number formula + Euler Product:

hKRegK = EP ·
wK ·

√
|∆K|

2r1 · (2π)r2
.

From the relations, we can also deduce a candidate for an
approximation of RegK and perform the verification step.
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What is a good polynomial ?

We want a polynomial that defines a fixed number field:
The degree is fixed,
We want the coefficients as small as possible.

Definition

Let T =
∑
akX

k ∈ Z[X]. The height of T is defined as the maximal
norm of its coefficients, namely

H(T ) = max
k
|ak|.
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Classes from Biasse and Fieker work

Definition

Let n0, d0 > 0 and 0 < α < 1
2 .

Cn0,d0,α =

{
K = Q[X]/(T )

∣∣ deg(T ) = n0(log |∆K|)α(1 + o(1))
logH(T ) = d0(log |∆K|)1−α(1 + o(1))

}

Theorem
If we know such a good polynomial, there exists an algorithm with
runtime L|∆K|(a) for class group computation with

a = max

(
α,

1− α
2

)
.
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Our results [GJ16]

Definition
Let n0, d0 > 0, 0 < α < 1 and 1− α ≤ γ ≤ 1.

Dn0,d0,α,γ =

{
K =

Q[X]

(T )

∣∣ deg(T ) ≤ n0

(
log |∆K|

log log |∆K|

)α
logH(T ) ≤ d0(log |∆K|)γ(log log |∆K|)1−γ

}

Proposition
If there exists a polynomial T such that K ∈ Dn0,d0,α,γ , we find the
minimal one in time L|∆K|(α).

Theorem
Under GRH and smoothness heuristics, for every K ∈ Dn0,d0,α,γ ,
α < 1

2 , there exists an L∆K(a) algorithm for class group computation
with

a = max
(
α,
γ

2

)
.
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State of the art [BF14]

General case:

L|∆K|
(

1
2

) L|∆K|
(

2
3 + ε

)

a

0

1
3

1
2

2
3

0 1
4

1
3

1
2

2
3

3
4 1 α

First general subexponential algorithm.
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State of the art [BF14]

Special case:

L|∆K|
(

1
2

) L|∆K|
(

2
3 + ε

)
L|∆K|

(
max(α, 1−α

2 )
)

a

0

1
3

1
2

2
3

0 1
4

1
3

1
2

2
3

3
4 1 α

Only if K is defined by T such that H(T ) = L|∆K| (1− α).
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Our work [GJ16]

General case:

depending on γ

L|∆K|
(
max(α, γ2 )

)

a

0

1
3

1
2

2
3

0 1
4

1
3

1
2

2
3

3
4 1 α

Without any condition.
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The Principal Ideal Problem

Definition
The Principal Ideal Problem (PIP) consists in finding a
generator of an ideal, assuming it is principal.

Base of several cryptographical schemes ([SV10],[GGH13])

Two distinct phases:
1 Given the Z-basis of the ideal a = 〈g〉, find a — not

necessarily short — generator g′ = g · u for a unit u.
2 From g′, find a short generator of the ideal.

Campbell, Groves, and Sheperd (2014) found a solution the second
point for power-of-two cyclotomic fields. Cramer, Ducas, Peikert,
and Regev (2016) provided a proof and an extension to
prime-power cyclotomic fields.
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The Principal Ideal Problem

Definition
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generator of an ideal, assuming it is principal.

Base of several cryptographical schemes ([SV10],[GGH13])

Two distinct phases:
1 Given the Z-basis of the ideal a = 〈g〉, find a — not

necessarily short — generator g′ = g · u for a unit u.
2 From g′, find a short generator of the ideal.

Campbell, Groves, and Sheperd (2014) found a solution the second
point for power-of-two cyclotomic fields. Cramer, Ducas, Peikert,
and Regev (2016) provided a proof and an extension to
prime-power cyclotomic fields.
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FHE scheme – Smart and Vercauteren PKC 2010

Key Generation:
1 Fix the security parameter N = 2n.

2 Let F (X) = XN + 1 be the polynomial defining the
cyclotomic field K = Q(ζ2N ).

3 Set G(X) = 1 + 2 · S(X),
for S(X) of degree N − 1 with coefficients in

[
−2
√
N , 2

√
N
]
,

such that the norm N (〈G(ζ2N )〉) is prime.

4 Set g = G(ζ2N ) ∈ OK.

5 Return the secret key sk = g and the public key
pk = HNF(〈g〉).

Our goal: Recover the secret key from the public key.
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Outline of the algorithm [BEFGK17]

1 Perform a reduction from the cyclotomic field to its totally real
subfield, allowing to work in smaller dimension.

2 Then a descent makes the size of involved ideals decrease.

3 Collect relations and run linear algebra to construct small
ideals and a generator.

4 Eventually run the derivation of the small generator from a
bigger one.
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The descent strategy

Input ideal – Norm arbitrary largea0

a1
1 a1

2

a2
1 a2

2

a3
1 a3

2

. . .

al− 1

al1 al2 . . . alnl

. . . a3
n3

. . . a2
n2

. . . a1
n1
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2
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Solution for L|∆K|
(

1
2

)
-smooth ideals

Input: Bunch of prime ideals of norm below B = L|∆K|
(

1
2

)

As for class group computations, factor base: set of all prime
ideals with norm below B {p1, · · · , pN}

Construction of a full-rank matrix of relations M using the
same process (relation collection)

A N -dimensional vector Y including all the valuations of the
smooth ideals in the pi

A solution X of MX = Y provides a generator of the product
of the L|∆K|

(
1
2

)
-smooth ideals
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Merci
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