Class Group Computations in Number Fields and Applications to Cryptography

Alexandre Gélin

Laboratoire d'Informatique de Paris 6 UPMC – Sorbonne Universités

25/04/2017

Number fields

 \mathbb{K} number field \Rightarrow finite extension of $\mathbb{Q} \Rightarrow \exists T \in \mathbb{Z}[X]$ monic s.t.

 $\mathbb{K} \simeq \mathbb{Q}[X]/(T).$

T is a defining polynomial of \mathbb{K} .

Number fields

 \mathbb{K} number field \Rightarrow finite extension of $\mathbb{Q} \Rightarrow \exists T \in \mathbb{Z}[X]$ monic s.t.

 $\mathbb{K} \simeq \mathbb{Q}[X]/(T).$

T is a defining polynomial of \mathbb{K} .

Two interesting structures:

- Group of ideals
- Group of units

Number fields

 \mathbb{K} number field \Rightarrow finite extension of $\mathbb{Q} \Rightarrow \exists T \in \mathbb{Z}[X]$ monic s.t.

 $\mathbb{K} \simeq \mathbb{Q}[X]/(T).$

T is a defining polynomial of \mathbb{K} .

Two interesting structures:

Group of ideals

Quotient by principal ideals \Rightarrow class group $Cl(\mathcal{O}_{\mathbb{K}})$

• Group of units $\label{eq:Finitely} \mbox{Finitely generated} \Rightarrow \mbox{fundamental units}$

Number fields

 $\mathbb K$ number field \Rightarrow finite extension of $\mathbb Q \Rightarrow \exists T \in \mathbb Z[X]$ monic s.t.

 $\mathbb{K} \simeq \mathbb{Q}[X]/(T).$

T is a defining polynomial of \mathbb{K} .

Two interesting structures:

Group of ideals

Quotient by principal ideals \Rightarrow class group $Cl(\mathcal{O}_{\mathbb{K}})$

 $\bullet~{\rm Group}~{\rm of}~{\rm units}$ Finitely generated $\Rightarrow~{\rm fundamental}~{\rm units}$

Aim: Compute the structure of the class group.

General strategy for computation Conditional Improvement

Outline

Class Group Computations

- General strategy for computation
- Conditional Improvement

Application to Cryptography The Principal Ideal Problem (PIP) Our descent algorithm

Subexponential *L*-notation : $L_N(0, c) \approx (\log N)^c$ $L_N(1, c) \approx N^c$ $L_N(\alpha, c) = \exp\left((c + o(1))(\log N)^{\alpha}(\log \log N)^{1-\alpha}\right).$

1969 Shanks: quadratic number fields in $O(|\Delta_{\mathbb{K}}|^{\frac{1}{5}})$.

- 1989 Hafner and McCurley: imaginary quadratic number fields in $L_{|\Delta_{\mathbb{K}}|}(\frac{1}{2},\sqrt{2}).$
- 1990 Buchmann: all number fields with fixed degree in $L_{|\Delta_{\mathbb{K}}|}(\tfrac{1}{2},1.7).$
- 2014 Biasse and Fieker: all number fields in $L_{|\Delta_{\mathbb{K}}|}(\frac{2}{3} + \varepsilon)$ in general and $L_{|\Delta_{\mathbb{K}}|}(\frac{1}{2})$ if $n \leq \log(|\Delta_{\mathbb{K}}|)^{3/4-\varepsilon}$.

2014 Biasse and Fieker: number fields defined by a *good* polynomial in $L_{|\Delta_{\mathbb{K}}|}(a)$, $\frac{1}{3} \le a < \frac{1}{2}$.

Index calculus

Factor base

Fix a factor base composed of small elements.

Relation collection

Collect some relations between those small elements, corresponding to linear equations.

Linear algebra

Deduce the sought result performing linear algebra on the system built.

The factor base

 $\mathcal{B} = \{ \mathsf{prime ideals in } \mathcal{O}_{\mathbb{K}} \text{ of norm below } B \}$

B determined so that ${\mathcal B}$ generates the whole class group.

Minkowski's bound: every class contains an ideal of norm smaller than

$$M_{\mathbb{K}} = \sqrt{|\Delta_{\mathbb{K}}|} \left(\frac{4}{\pi}\right)^{r_2} \frac{n!}{n^n}.$$

Bach's bound: assuming GRH, classes of ideals of norm less than $12(\log|\Delta_{\mathbb{K}}|)^2$ generate the class group.

The factor base

 $\mathcal{B} = \{ \mathsf{prime ideals in } \mathcal{O}_{\mathbb{K}} \text{ of norm below } B \}$

B determined so that ${\mathcal B}$ generates the whole class group.

Minkowski's bound: every class contains an ideal of norm smaller than

$$M_{\mathbb{K}} = \sqrt{|\Delta_{\mathbb{K}}|} \left(\frac{4}{\pi}\right)^{r_2} \frac{n!}{n^n}.$$

Bach's bound: assuming GRH, classes of ideals of norm less than $12(\log|\Delta_{\mathbb{K}}|)^2$ generate the class group.

Practically

$$B = L_{|\Delta_{\mathbb{K}}|}(\beta, c_b).$$

Relation collection

$$\mathcal{B} = (\mathfrak{p}_1, \cdots, \mathfrak{p}_N)$$

Surjective morphism:

$$\begin{array}{ccccc} \mathbb{Z}^N & \stackrel{\phi}{\longrightarrow} & \mathcal{I} & \stackrel{\pi}{\longrightarrow} & \mathsf{Cl}(\mathcal{O}_{\mathbb{K}}) \\ (e_1, \cdots, e_N) & \longmapsto & \prod_i \mathfrak{p}_i^{e_i} & \longmapsto & \prod_i [\mathfrak{p}_i]^{e_i} \end{array}$$

$$\mathsf{Cl}(\mathcal{O}_{\mathbb{K}}) \simeq \mathbb{Z}^N / \left\{ (e_1, \cdots, e_N) \in \mathbb{Z}^N \mid \prod_i \mathfrak{p}_i^{e_i} = (\alpha) \mathcal{O}_{\mathbb{K}} \right\}$$

⊒ →

Relation collection

$$\mathcal{B} = (\mathfrak{p}_1, \cdots, \mathfrak{p}_N)$$

Surjective morphism:

$$\begin{array}{ccccc} \mathbb{Z}^N & \stackrel{\phi}{\longrightarrow} & \mathcal{I} & \stackrel{\pi}{\longrightarrow} & \mathsf{Cl}(\mathcal{O}_{\mathbb{K}}) \\ (e_1, \cdots, e_N) & \longmapsto & \prod_i \mathfrak{p}_i^{e_i} & \longmapsto & \prod_i [\mathfrak{p}_i]^{e_i} \end{array}$$

$$\mathsf{Cl}(\mathcal{O}_{\mathbb{K}}) \simeq \mathbb{Z}^N / \left\{ (e_1, \cdots, e_N) \in \mathbb{Z}^N \mid \prod_i \mathfrak{p}_i^{e_i} = (\alpha) \mathcal{O}_{\mathbb{K}} \right\}$$

Idea:

- Pick at random $A = \prod_i \mathfrak{p}_i^{v_i}$.
- **②** Find a *reduced* ideal A' in the same class.
- If A' splits on \mathcal{B} (\Leftrightarrow A' = $\prod_i \mathfrak{p}_i^{v'_i}$) then

$$A(A')^{-1} = \prod_i \mathfrak{p}_i^{v_i - v'_i}$$
 is principal.

Linear algebra

- Relations stored in a matrix of size about $N \times N$.
- Structure of the class group given by the *Smith Normal Form* of the matrix.
- First compute *Hermite Normal Form* with a premultiplier because we need kernel vectors.
- Storjohann and Labahn algorithm, runtime in N^{ω+1} (2 ≤ ω ≤ 3 exponent of matrix multiplication)

Verification

We find a tentative class group H, but the class group $Cl(\mathcal{O}_{\mathbb{K}})$ may be only a quotient of H.

 \Rightarrow Need an approximation of the class number $h_K = |\mathsf{Cl}(\mathcal{O}_{\mathbb{K}})|$.

Verification

We find a tentative class group H, but the class group $Cl(\mathcal{O}_{\mathbb{K}})$ may be only a quotient of H.

 \Rightarrow Need an approximation of the class number $h_K = |\mathsf{CI}(\mathcal{O}_{\mathbb{K}})|$.

Class number formula + Euler Product:

$$h_{\mathbb{K}}\mathsf{Reg}_{\mathbb{K}} = \mathsf{EP} \cdot \frac{w_{\mathbb{K}} \cdot \sqrt{|\Delta_{\mathbb{K}}|}}{2^{r_1} \cdot (2\pi)^{r_2}}.$$

Verification

We find a tentative class group H, but the class group $Cl(\mathcal{O}_{\mathbb{K}})$ may be only a quotient of H.

 \Rightarrow Need an approximation of the class number $h_K = |\mathsf{Cl}(\mathcal{O}_{\mathbb{K}})|$.

Class number formula + Euler Product:

$$h_{\mathbb{K}}\mathsf{Reg}_{\mathbb{K}} = \mathsf{EP} \cdot \frac{w_{\mathbb{K}} \cdot \sqrt{|\Delta_{\mathbb{K}}|}}{2^{r_1} \cdot (2\pi)^{r_2}}.$$

From the relations, we can also deduce a candidate for an approximation of Reg_K and perform the verification step.

Subexponential L-notation : $L_N(0,c) \approx (\log N)^c$ $L_N(1,c) \approx N^c$ $L_N(\alpha,c) = \exp\left((c+o(1))(\log N)^{\alpha}(\log \log N)^{1-\alpha}\right).$

1969 Shanks: quadratic number fields in $O(|\Delta_{\mathbb{K}}|^{\frac{1}{5}})$.

- 1989 Hafner and McCurley: imaginary quadratic number fields in $L_{|\Delta_{\mathbb{K}}|}(\frac{1}{2},\sqrt{2}).$
- 1990 Buchmann: all number fields with fixed degree in $L_{|\Delta_{\mathbb{K}}|}(\tfrac{1}{2},1.7).$
- 2014 Biasse and Fieker: all number fields in $L_{|\Delta_{\mathbb{K}}|}(\frac{2}{3} + \varepsilon)$ in general and $L_{|\Delta_{\mathbb{K}}|}(\frac{1}{2})$ if $n \leq \log(|\Delta_{\mathbb{K}}|)^{3/4-\varepsilon}$.

2014 Biasse and Fieker: number fields defined by a *good* polynomial in $L_{|\Delta_{\mathbb{K}}|}(a)$, $\frac{1}{3} \le a < \frac{1}{2}$.

General strategy for computation Conditional Improvement

What is a *good* polynomial ?

We want a polynomial that defines a fixed number field:

- The degree is fixed,
- We want the coefficients as small as possible.

What is a *good* polynomial ?

We want a polynomial that defines a fixed number field:

- The degree is fixed,
- We want the coefficients as small as possible.

Definition

Let $T=\sum a_k X^k\in \mathbb{Z}[X].$ The height of T is defined as the maximal norm of its coefficients, namely

$$H(T) = \max_{k} |a_k|.$$

Classes from Biasse and Fieker work

Definition

Let
$$n_0, d_0 > 0$$
 and $0 < \alpha < \frac{1}{2}$.

$$\mathcal{C}_{n_0,d_0,\alpha} = \left\{ \mathbb{K} = \mathbb{Q}[X]/(T) | \begin{array}{c} \deg(T) = n_0 (\log |\Delta_{\mathbb{K}}|)^{\alpha} (1+o(1)) \\ \log H(T) = d_0 (\log |\Delta_{\mathbb{K}}|)^{1-\alpha} (1+o(1)) \end{array} \right\}$$

Theorem

If we know such a good polynomial, there exists an algorithm with runtime $L_{|\Delta_{\mathbb{K}}|}(a)$ for class group computation with

$$a = \max\left(\alpha, \frac{1-\alpha}{2}\right).$$

Our results [GJ16]

Definition

Let
$$n_0, d_0 > 0$$
, $0 < \alpha < 1$ and $1 - \alpha \le \gamma \le 1$.

$$\mathcal{D}_{n_0,d_0,\alpha,\gamma} = \left\{ \mathbb{K} = \frac{\mathbb{Q}[X]}{(T)} \middle| \begin{array}{l} \deg(T) \le n_0 \left(\frac{\log |\Delta_{\mathbb{K}}|}{\log \log |\Delta_{\mathbb{K}}|} \right)^{\alpha} \\ \log H(T) \le d_0 (\log |\Delta_{\mathbb{K}}|)^{\gamma} (\log \log |\Delta_{\mathbb{K}}|)^{1-\gamma} \end{array} \right\}$$

(日)、

Our results [GJ16]

Definition

Let
$$n_0, d_0 > 0$$
, $0 < \alpha < 1$ and $1 - \alpha \le \gamma \le 1$.

$$\mathcal{D}_{n_0,d_0,\alpha,\gamma} = \left\{ \mathbb{K} = \frac{\mathbb{Q}[X]}{(T)} \left| \begin{array}{c} \deg(T) \le n_0 \left(\frac{\log |\Delta_{\mathbb{K}}|}{\log \log |\Delta_{\mathbb{K}}|} \right)^{\alpha} \\ \log H(T) \le d_0 (\log |\Delta_{\mathbb{K}}|)^{\gamma} (\log \log |\Delta_{\mathbb{K}}|)^{1-\gamma} \end{array} \right\} \right\}$$

Proposition

If there exists a polynomial T such that $\mathbb{K} \in \mathcal{D}_{n_0,d_0,\alpha,\gamma}$, we find the minimal one in time $L_{|\Delta_{\mathbb{K}}|}(\alpha)$.

Our results [GJ16]

Definition

Let
$$n_0, d_0 > 0$$
, $0 < \alpha < 1$ and $1 - \alpha \le \gamma \le 1$.

$$\mathcal{D}_{n_0,d_0,\alpha,\gamma} = \left\{ \mathbb{K} = \frac{\mathbb{Q}[X]}{(T)} \left| \begin{array}{c} \deg(T) \le n_0 \left(\frac{\log |\Delta_{\mathbb{K}}|}{\log \log |\Delta_{\mathbb{K}}|} \right)^{\alpha} \\ \log H(T) \le d_0 (\log |\Delta_{\mathbb{K}}|)^{\gamma} (\log \log |\Delta_{\mathbb{K}}|)^{1-\gamma} \end{array} \right\} \right\}$$

Proposition

If there exists a polynomial T such that $\mathbb{K} \in \mathcal{D}_{n_0,d_0,\alpha,\gamma}$, we find the minimal one in time $L_{|\Delta_{\mathbb{K}}|}(\alpha)$.

Theorem

Under GRH and smoothness heuristics, for every $\mathbb{K} \in \mathcal{D}_{n_0,d_0,\alpha,\gamma}$, $\alpha < \frac{1}{2}$, there exists an $L_{\Delta_{\mathbb{K}}}(a)$ algorithm for class group computation with

$$a = \max\left(\alpha, \frac{\gamma}{2}\right).$$

General strategy for computation Conditional Improvement

State of the art [BF14]

General case:

First general subexponential algorithm.

General strategy for computation Conditional Improvement

State of the art [BF14]

Special case:

Only if K is defined by T such that $H(T) = L_{|\Delta_K|} (1 - \alpha)$.

Alexandre Gélin Class Group & Cryptography

General strategy for computation Conditional Improvement

Our work [GJ16]

General case:

Without any condition.

The Principal Ideal Problem (PIP) Our descent algorithm

Outline

1 Class Group Computations

- General strategy for computation
- Conditional Improvement

2 Application to Cryptography

- The Principal Ideal Problem (PIP)
- Our descent algorithm

The Principal Ideal Problem (PIP) Our descent algorithm

The Principal Ideal Problem

Definition

The *Principal Ideal Problem* (PIP) consists in finding a generator of an ideal, assuming it is principal.

The Principal Ideal Problem (PIP) Our descent algorithm

The Principal Ideal Problem

Definition

The *Short Principal Ideal Problem* (SPIP) consists in finding a short generator of an ideal, assuming it is principal.

The Principal Ideal Problem (PIP) Our descent algorithm

The Principal Ideal Problem

Definition

The *Short Principal Ideal Problem* (SPIP) consists in finding a short generator of an ideal, assuming it is principal.

• Base of several cryptographical schemes ([SV10],[GGH13])

The Principal Ideal Problem (PIP) Our descent algorithm

The Principal Ideal Problem

Definition

The *Short Principal Ideal Problem* (SPIP) consists in finding a short generator of an ideal, assuming it is principal.

- Base of several cryptographical schemes ([SV10],[GGH13])
- Two distinct phases:
 - Given the Z-basis of the ideal a = ⟨g⟩, find a not necessarily short generator g' = g ⋅ u for a unit u.
 - 2 From g', find a short generator of the ideal.

The Principal Ideal Problem (PIP) Our descent algorithm

The Principal Ideal Problem

Definition

The *Short Principal Ideal Problem* (SPIP) consists in finding a short generator of an ideal, assuming it is principal.

- Base of several cryptographical schemes ([SV10],[GGH13])
- Two distinct phases:
 - Given the Z-basis of the ideal a = ⟨g⟩, find a not necessarily short generator g' = g ⋅ u for a unit u.
 - 2 From g', find a short generator of the ideal.

Campbell, Groves, and Sheperd (2014) found a solution the second point for power-of-two cyclotomic fields. Cramer, Ducas, Peikert, and Regev (2016) provided a proof and an extension to prime-power cyclotomic fields.

FHE scheme – Smart and Vercauteren PKC 2010

Key Generation:

- Fix the security parameter $N = 2^n$.
- ② Let F(X) = X^N + 1 be the polynomial defining the cyclotomic field K = Q(ζ_{2N}).
- $\begin{aligned} & \textbf{Set } G(X) = 1 + 2 \cdot S(X), \\ & \text{for } S(X) \text{ of degree } N 1 \text{ with coefficients in } \left[-2^{\sqrt{N}}, 2^{\sqrt{N}} \right], \\ & \text{such that the norm } \mathcal{N}\left(\langle G(\zeta_{2N}) \rangle \right) \text{ is prime.} \end{aligned}$

• Set
$$\boldsymbol{g} = G(\zeta_{2N}) \in \mathcal{O}_{\mathbb{K}}$$
.

So Return the secret key sk = g and the public key pk = HNF($\langle g \rangle$).

FHE scheme – Smart and Vercauteren PKC 2010

Key Generation:

- Fix the security parameter $N = 2^n$.
- Q Let F(X) = X^N + 1 be the polynomial defining the cyclotomic field K = Q(ζ_{2N}).
- $\begin{aligned} & \textbf{Set } G(X) = 1 + 2 \cdot S(X), \\ & \text{for } S(X) \text{ of degree } N 1 \text{ with coefficients in } \left[-2^{\sqrt{N}}, 2^{\sqrt{N}} \right], \\ & \text{such that the norm } \mathcal{N}\left(\langle G(\zeta_{2N}) \rangle \right) \text{ is prime.} \end{aligned}$

• Set
$$\boldsymbol{g} = G(\zeta_{2N}) \in \mathcal{O}_{\mathbb{K}}$$
.

• Return the secret key sk = g and the public key $pk = HNF(\langle g \rangle)$.

Our goal: Recover the secret key from the public key.

Outline of the algorithm [BEFGK17]

- Perform a reduction from the cyclotomic field to its totally real subfield, allowing to work in smaller dimension.
- ② Then a descent makes the size of involved ideals decrease.
- Ollect relations and run linear algebra to construct small ideals and a generator.
- Eventually run the derivation of the small generator from a bigger one.

The Principal Ideal Problem (PIP) Our descent algorithm

The descent strategy

Input ideal – Norm arbitrary large

The Principal Ideal Problem (PIP) Our descent algorithm

The descent strategy

Input ideal – Norm arbitrary large

Initial reduction – Norm: $L_{|\Delta_{\mathbb{K}}|}\left(\frac{3}{2}\right)$

The Principal Ideal Problem (PIP) Our descent algorithm

The descent strategy

Input ideal – Norm arbitrary large

The Principal Ideal Problem (PIP) Our descent algorithm

The descent strategy

Input ideal – Norm arbitrary large

First step – Norm:
$$L_{|\Delta_{\mathbb{K}}|}\left(\frac{5}{4}\right)$$

The Principal Ideal Problem (PIP) Our descent algorithm

The descent strategy

Input ideal – Norm arbitrary large

First step –
$$L_{|\Delta_{\mathbb{K}}|}\left(\frac{3}{4}\right)$$
-smooth

The Principal Ideal Problem (PIP) Our descent algorithm

The descent strategy

Input ideal – Norm arbitrary large

First step –
$$L_{|\Delta_{\mathbb{K}}|}\left(\frac{3}{4}\right)$$
-smooth

Second step – Norm:
$$L_{|\Delta_{\mathbb{K}}|}\left(\frac{9}{8}\right)$$

The Principal Ideal Problem (PIP) Our descent algorithm

The descent strategy

Input ideal – Norm arbitrary large

First step –
$$L_{|\Delta_{\mathbb{K}}|}\left(\frac{3}{4}\right)$$
-smooth

Second step –
$$L_{|\Delta_{\mathbb{K}}|}\left(\frac{5}{8}\right)$$
-smooth

The Principal Ideal Problem (PIP) Our descent algorithm

The descent strategy

Input ideal – Norm arbitrary large

Initial reduction – $L_{\left|\Delta_{\mathbb{K}}\right|}\left(1\right)$ -smooth

First step – $L_{|\Delta_{\mathbb{K}}|}\left(\frac{3}{4}\right)$ -smooth

Second step – $L_{|\Delta_{\mathbb{K}}|}\left(\frac{5}{8}\right)$ -smooth

Last but one step – Norm: $\approx L_{|\Delta_{\mathbb{K}}|}(1)$

・ロト ・聞 ト ・ 臣 ト ・ 臣 ト

The Principal Ideal Problem (PIP) Our descent algorithm

The descent strategy

Input ideal – Norm arbitrary large

Initial reduction – $L_{\left| \Delta_{\mathbb{K}} \right|}\left(1 \right)$ -smooth

First step – $L_{|\Delta_{\mathbb{K}}|}\left(\frac{3}{4}\right)$ -smooth

Second step – $L_{|\Delta_{\mathbb{K}}|}\left(\frac{5}{8}\right)$ -smooth

Last but one step – $\approx L_{|\Delta_{\mathbb{K}}|}\left(\frac{1}{2}\right)$ -smooth

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト ・

The Principal Ideal Problem (PIP) Our descent algorithm

The descent strategy

Input ideal – Norm arbitrary large

Initial reduction – $L_{|\Delta_{\mathbb{K}}|}\left(1\right)$ -smooth

First step –
$$L_{|\Delta_{\mathbb{K}}|}\left(\frac{3}{4}\right)$$
-smooth

Second step – $L_{|\Delta_{\mathbb{K}}|}\left(\frac{5}{8}\right)$ -smooth

Last but one step – $\approx L_{|\Delta_{\mathbb{K}}|}\left(\frac{1}{2}\right)$ -smooth

Last step – Norm:
$$L_{|\Delta_{\mathbb{K}}|}(1)$$

The Principal Ideal Problem (PIP) Our descent algorithm

The descent strategy

Input ideal – Norm arbitrary large

Initial reduction – $L_{|\Delta_{\mathbb{K}}|}\left(1\right)$ -smooth

First step –
$$L_{|\Delta_{\mathbb{K}}|}\left(\frac{3}{4}\right)$$
-smooth

Second step – $L_{|\Delta_{\mathbb{K}}|}\left(\frac{5}{8}\right)$ -smooth

Last but one step – $\approx L_{|\Delta_{\mathbb{K}}|}\left(\frac{1}{2}\right)$ -smooth

Last step –
$$L_{|\Delta_{\mathbb{K}}|}\left(\frac{1}{2}\right)$$
-smooth

The Principal Ideal Problem (PIP) Our descent algorithm

The descent strategy

Input ideal – Norm arbitrary large

Initial reduction – $L_{\left| \Delta_{\mathbb{K}} \right|}\left(1 \right)$ -smooth

First step –
$$L_{|\Delta_{\mathbb{K}}|}\left(\frac{3}{4}\right)$$
-smooth

Second step – $L_{|\Delta_{\mathbb{K}}|}\left(\frac{5}{8}\right)$ -smooth

Last but one step – $\approx L_{|\Delta_{\mathbb{K}}|}\left(\frac{1}{2}\right)$ -smooth

Last step –
$$L_{|\Delta_{\mathbb{K}}|}\left(\frac{1}{2}\right)$$
-smooth

The Principal Ideal Problem (PIP) Our descent algorithm

Solution for $L_{|\Delta_{\mathbb{K}}|}\left(\frac{1}{2}\right)$ -smooth ideals

Input: Bunch of prime ideals of norm below $B = L_{|\Delta_{\mathbb{K}}|}\left(\frac{1}{2}\right)$

Alexandre Gélin Class Group & Cryptography

Input: Bunch of prime ideals of norm below $B = L_{|\Delta_{\mathbb{K}}|}\left(\frac{1}{2}\right)$

• As for class group computations, factor base: set of all prime ideals with norm below B { p_1, \cdots, p_N }

Input: Bunch of prime ideals of norm below $B = L_{|\Delta_{\mathbb{K}}|}\left(\frac{1}{2}\right)$

- As for class group computations, factor base: set of all prime ideals with norm below B $\{p_1, \cdots, p_N\}$
- Construction of a full-rank matrix of relations M using the same process (relation collection)

Input: Bunch of prime ideals of norm below $B = L_{|\Delta_{\mathbb{K}}|} \left(\frac{1}{2}\right)$

- As for class group computations, factor base: set of all prime ideals with norm below B { p_1, \cdots, p_N }
- Construction of a full-rank matrix of relations M using the same process (relation collection)
- \bullet A N-dimensional vector Y including all the valuations of the smooth ideals in the \mathfrak{p}_i

Input: Bunch of prime ideals of norm below $B = L_{|\Delta_{\mathbb{K}}|}\left(\frac{1}{2}\right)$

- As for class group computations, factor base: set of all prime ideals with norm below B { p_1, \cdots, p_N }
- Construction of a full-rank matrix of relations M using the same process (relation collection)
- \bullet A N-dimensional vector Y including all the valuations of the smooth ideals in the \mathfrak{p}_i
- A solution X of MX=Y provides a generator of the product of the $L_{|\Delta_{\mathbb{K}}|}\left(\frac{1}{2}\right)\text{-smooth ideals}$

(日) (同) (三) (三)

The Principal Ideal Problem (PIP) Our descent algorithm

Thanks

Merci

Alexandre Gélin Class Group & Cryptography

(日)、

≣≯