Constructions de protocoles efficaces de récupération confidentielle d'information (PIR)

Julien Lavauzelle

équipe projet GRACE LIX & INRIA Saclay

Journées Codage et Cryptographie 2017, La Bresse 27/04/2017

- 1. Problématique et définitions
- 2. Protocoles de PIR avec des codes à propriétés locales
- 3. Designs transversaux et leurs codes
- 4. Protocoles de PIR fondés sur des designs transversaux
- 5. Instances et généralisation

1. Problématique et définitions

- 2. Protocoles de PIR avec des codes à propriétés locales
- Designs transversaux et leurs codes
- 4. Protocoles de PIR fondés sur des designs transversaux
- Instances et généralisation

Problématique

Problématique — Private Information Retrieval (PIR)

Après le dépôt d'un fichier F sur un système distant,

comment accéder à la donnée Fi de manière confidentielle

(c'est-à-dire, sans donner d'information sur la valeur de i)?

2/18 J. Lavauzelle IC2 2017

Soit F un fichier déposé sur un système distant S.

Un utilisateur U cherche à retrouver le symbole F_i .

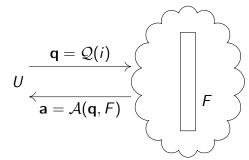
Protocole de récupération confidentielle d'information (*Private Information Retrieval*, PIR) :

Soit F un fichier déposé sur un système distant S.

Un utilisateur U cherche à retrouver le symbole F_i .

Protocole de récupération confidentielle d'information (*Private* Information Retrieval, PIR):

- 1. *U* engendre un ensemble de requêtes $\mathbf{q} = \mathcal{Q}(i)$ et l'envoie à S
- 2. S calcule une réponse $\mathbf{a} = \mathcal{A}(\mathbf{q}, F)$ et la renvoie à U
- 3. *U* reconstruit $F_i = \mathcal{R}(\mathbf{q}, \mathbf{a}, i)$.

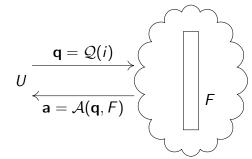


Soit F un fichier déposé sur un système distant S.

Un utilisateur U cherche à retrouver le symbole F_i .

Protocole de récupération confidentielle d'information (*Private Information Retrieval*, PIR) :

- 1. U engendre un ensemble de requêtes $\mathbf{q} = \mathcal{Q}(i)$ et l'envoie à S
- 2. *S* calcule une réponse $\mathbf{a} = \mathcal{A}(\mathbf{q}, F)$ et la renvoie à *U*
- 3. U reconstruit $F_i = \mathcal{R}(\mathbf{q}, \mathbf{a}, i)$.



Sécurité : on veut que $\mathbb{P}(\mathbf{q}|i) = \mathbb{P}(\mathbf{q})$.

Objectifs

Caractéristiques attendues :

- Faible complexité de communication (nombre de bits échangés).
- ► Faible complexité des algorithmes
 - de réponse A.
 - de reconstruction R.
- ► Faible redondance de stockage (si encodage).

Impact direct pour l'utilisateur : coût (financier) de la confidentialité.

J. Lavauzelle JC2 2017

Objectifs

Caractéristiques attendues :

- ► Faible complexité de communication (nombre de bits échangés).
- ► Faible complexité des algorithmes
 - ▶ de réponse A,
 - de reconstruction R.
- Faible redondance de stockage (si encodage).

Impact direct pour l'utilisateur : coût (financier) de la confidentialité.

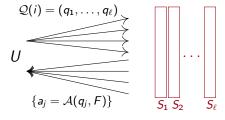
Une approche triviale : télécharger entièrement le fichier...

... mais c'est essentiellement la meilleure solution pour une sécurité inconditionnelle, lorsqu'un seul serveur est utilisé [CGKS95]

Soit F un fichier déposé sur ℓ serveurs S_1, \ldots, S_{ℓ} .

Pour retrouver le symbole F_i :

- 1. U engendre un ensemble de requêtes $\mathbf{q} = \mathcal{Q}(i)$ et envoie q_j à S_j
- 2. chaque S_j calcule une réponse $a_j = \mathcal{A}(q_j, F)$ et la renvoie à U
- 3. *U* reconstruit $F_i = \mathcal{R}(\mathbf{q}, \mathbf{a}, i)$



Sécurité : on veut que $\mathbb{P}(q_i|i) = \mathbb{P}(q_i), \forall j = 1, \dots, \ell$.

- 1. Problématique et définitions
- 2. Protocoles de PIR avec des codes à propriétés locales
- Designs transversaux et leurs codes
- 4. Protocoles de PIR fondés sur des designs transversaux
- 5. Instances et généralisation

Codes: rappels et notations

- ▶ Un code (linéaire) \mathcal{C} de longueur n et dimension k sur \mathbb{F}_q est un sous-espace vectoriel de \mathbb{F}_q^n de dimension k
- ▶ Pour un mot $w \in \mathbb{F}_q^n$:
 - ▶ support supp $(w) = \{i \in [1, n], w_i \neq 0\}$
- ▶ Distance minimale : $d(C) = \min\{\text{wt}(c), c \in C, c \neq 0\}$
- ▶ Dual (= orthogonal) d'un code :

$$\mathcal{C}^{\perp} = \{ w \in \mathbb{F}_q^n, \forall c \in \mathcal{C}, \sum_{i=1}^n c_i w_i = 0 \}$$

▶ On va noter $c = \text{Enc}_{\mathcal{C}}(F)$ l'encodage du fichier F par un code \mathcal{C} .

Soit un code $C \subseteq \mathbb{F}_q^n$ tel que $\forall i, j \in [1, n]$, il existe $h \in C^{\perp}$ vérifiant :

$$\{i,j\}\subset \mathrm{supp}(h)$$
 et $\mathrm{wt}(h)=\ell+1.$

On note $H_{\ell}(i,j)$ l'ensemble de tels mots h.

Soit un code $\mathcal{C}\subseteq \mathbb{F}_q^n$ tel que $\forall i,j\in [1,n]$, il existe $h\in \mathcal{C}^\perp$ vérifiant :

$$\{i,j\}\subset \mathrm{supp}(h)$$
 et $\mathrm{wt}(h)=\ell+1.$

On note $H_{\ell}(i,j)$ l'ensemble de tels mots h.

Protocole : Pour retrouver $F_i = c_i$:

1. L'utilisateur tire aléatoirement $h \in \bigcup_i H_{\ell}(i,j)$ qui "reconstruit" F_i .

$$Q(i) = (q_1, \ldots, q_\ell) = \operatorname{supp}(h) \setminus \{i\}$$

7/18

Soit un code $C \subseteq \mathbb{F}_q^n$ tel que $\forall i, j \in [1, n]$, il existe $h \in C^{\perp}$ vérifiant :

$$\{i,j\}\subset \mathrm{supp}(h)$$
 et $\mathrm{wt}(h)=\ell+1.$

On note $H_{\ell}(i,j)$ l'ensemble de tels mots h.

Protocole : Pour retrouver $F_i = c_i$:

1. L'utilisateur tire aléatoirement $h \in \bigcup_i H_\ell(i,j)$ qui "reconstruit" F_i .

$$Q(i) = (q_1, \ldots, q_\ell) = \operatorname{supp}(h) \setminus \{i\}$$

2. Chaque serveur S_i reçoit q_i et renvoie $a_i = c_{q_i}$.

Soit un code $\mathcal{C} \subseteq \mathbb{F}_q^n$ tel que $\forall i,j \in [1,n]$, il existe $h \in \mathcal{C}^\perp$ vérifiant :

$$\{i,j\}\subset \mathrm{supp}(h)$$
 et $\mathrm{wt}(h)=\ell+1.$

On note $H_{\ell}(i,j)$ l'ensemble de tels mots h.

Protocole : Pour retrouver $F_i = c_i$:

1. L'utilisateur tire aléatoirement $h \in \bigcup_j H_\ell(i,j)$ qui "reconstruit" F_i .

$$Q(i) = (q_1, \ldots, q_\ell) = \operatorname{supp}(h) \setminus \{i\}$$

- 2. Chaque serveur S_j reçoit q_j et renvoie $a_j = c_{q_i}$.
- 3. Comme

$$h \in \mathcal{C}^{\perp} \quad \Rightarrow \quad \sum_{j \in \operatorname{supp}(h)} h_j c_j = 0 \,,$$

l'utilisateur reconstruit $F_i = -\frac{1}{h_i} \sum_{j \neq i} h_j a_j$.

7/18

Résultats :

- ℓ serveurs et communication en $\Theta(\ell \log(q))$ bits
- complexité algorithmique :
 - réponse A en $\Omega(|F|)$ pour chaque serveur
 - reconstruction \mathcal{R} en $\mathcal{O}(\ell)$
- ▶ stockage : ℓ copies de $F \Rightarrow (\ell 1)|F|$ bits de redondance

J. Lavauzelle IC2 2017

Résultats :

- ℓ serveurs et communication en $\Theta(\ell \log(q))$ bits
- complexité algorithmique :
 - réponse A en $\Omega(|F|)$ pour chaque serveur (à améliorer)
 - reconstruction \mathcal{R} en $\mathcal{O}(\ell)$
- ▶ stockage : ℓ copies de $F \Rightarrow (\ell 1)|F|$ bits de redondance (à améliorer)

J. Lavauzelle IC2 2017

Résultats:

- ℓ serveurs et communication en $\Theta(\ell \log(q))$ bits
- complexité algorithmique :
 - réponse A en $\Omega(|F|)$ pour chaque serveur (à améliorer)
 - reconstruction \mathcal{R} en $\mathcal{O}(\ell)$
- ▶ stockage : ℓ copies de $F \Rightarrow (\ell 1)|F|$ bits de redondance (à améliorer)

• $\underline{1}$ ère idée : pré-calcul des réponses \Rightarrow moins de calcul, plus de stockage

Résultats:

- ℓ serveurs et communication en $\Theta(\ell \log(q))$ bits
- complexité algorithmique :
 - réponse A en $\Omega(|F|)$ pour chaque serveur (à améliorer)
 - reconstruction \mathcal{R} en $\mathcal{O}(\ell)$
- ▶ stockage : ℓ copies de $F \Rightarrow (\ell 1)|F|$ bits de redondance (à améliorer)

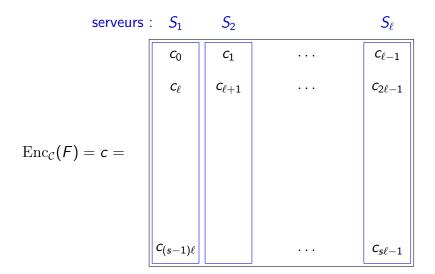
- <u>1ère idée</u> : pré-calcul des réponses ⇒ moins de calcul, plus de stockage
- 2nde idée [ALS14] : partager l'encodage de F sur les ℓ serveurs.

- 1. Problématique et définitions
- 2. Protocoles de PIR avec des codes à propriétés locales
- 3. Designs transversaux et leurs codes
- Protocoles de PIR fondés sur des designs transversaux
- 5. Instances et généralisation

$$\operatorname{Enc}_{\mathcal{C}}(F) = c =$$

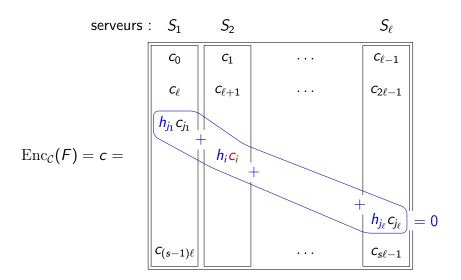
$$c_{(s-1)\ell}$$
 ... $c_{s\ell-1}$

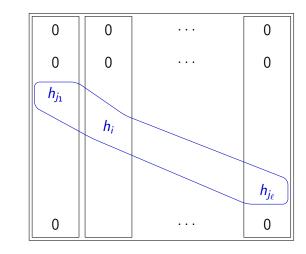
9/18 J. Lavauzelle

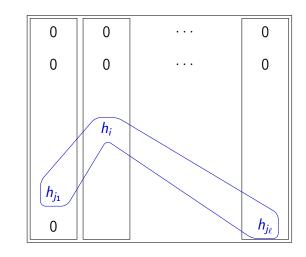


serveurs :
$$S_1$$
 S_2 S_ℓ $C_{\ell-1}$ \cdots $C_{\ell-1}$ C_ℓ $C_{\ell+1}$ \cdots $C_{2\ell-1}$ $C_{\ell-1}$ $C_{\ell-1}$

9/18 J. Lavauzelle JC2 2017







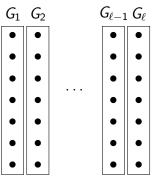
Un **design transversal** $\mathrm{TD}(\ell, s)$ est un triplet $(X, \mathcal{B}, \mathcal{G})$ tel que :

▶ X forme les *points*, $|X| = n = s\ell$,

•	•		•	•
•	•		•	•
•	•		•	•
•	•		•	•
•	•		•	•
•	•		•	•

Un **design transversal** $\mathrm{TD}(\ell,s)$ est un triplet $(X,\mathcal{B},\mathcal{G})$ tel que :

- ▶ X forme les *points*, $|X| = n = s\ell$,
- ▶ les *groupes* $\mathcal{G} = (G_1, \dots, G_\ell)$ sont une partition de X, avec $|G_i| = s$;

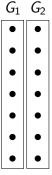


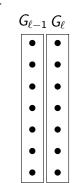
10/18

J. Lavauzelle

Un **design transversal** $\mathrm{TD}(\ell,s)$ est un triplet $(X,\mathcal{B},\mathcal{G})$ tel que :

- \blacktriangleright X forme les *points*, $|X| = n = s\ell$,
- ▶ les *groupes* $G = (G_1, ..., G_\ell)$ sont une partition de X, avec $|G_i| = s$;
- ▶ les *blocs* $B \in \mathcal{B}$ vérifient :
 - $B \subset X$ et $|B| = \ell$;
 - propriété d'incidence : si $\{i,j\}$ ⊂ X ne sont pas dans le même groupe, alors \exists ! bloc $B \in \mathcal{B}$ tel que $\{i,j\} \subset B$

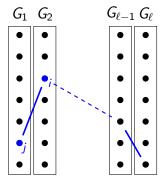




10/18

Un **design transversal** $\mathrm{TD}(\ell, s)$ est un triplet $(X, \mathcal{B}, \mathcal{G})$ tel que :

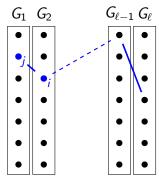
- \blacktriangleright X forme les points, $|X| = n = s\ell$,
- ▶ les *groupes* $\mathcal{G} = (G_1, \ldots, G_\ell)$ sont une partition de X, avec $|G_i| = s$;
- les blocs B ∈ B vérifient :
 - $B \subset X$ et $|B| = \ell$;
 - propriété d'incidence : si $\{i, j\} \subset X$ ne sont pas dans le même groupe, alors $\exists ! \ \mathsf{bloc} \ B \in \mathcal{B} \ \mathsf{tel} \ \mathsf{que} \ \{i,j\} \subset B$



J. Lavauzelle JC2 2017

Un **design transversal** $\mathrm{TD}(\ell,s)$ est un triplet $(X,\mathcal{B},\mathcal{G})$ tel que :

- \blacktriangleright X forme les *points*, $|X| = n = s\ell$,
- les *groupes* $G = (G_1, ..., G_\ell)$ sont une partition de X, avec $|G_i| = s$;
- ▶ les *blocs* $B \in \mathcal{B}$ vérifient :
 - $B \subset X$ et $|B| = \ell$;
 - propriété d'incidence : si $\{i,j\}$ ⊂ X ne sont pas dans le même groupe, alors \exists ! bloc $B \in \mathcal{B}$ tel que $\{i,j\} \subset B$



Code engendré par un TD

Soit $\mathcal{T} = (X, \mathcal{B}, \mathcal{G})$ un $\mathrm{TD}(\ell, s)$. On définit sa **matrice d'incidence** comme la matrice M de taille $|\mathcal{B}| \times |X|$ telle que:

$$M_{i,j} = \begin{cases} 1 & \text{si } x_j \in B_i \\ 0 & \text{sinon} \end{cases}$$

Code engendré par un TD

Soit $\mathcal{T} = (X, \mathcal{B}, \mathcal{G})$ un $\mathrm{TD}(\ell, s)$. On définit sa **matrice d'incidence** comme la matrice M de taille $|\mathcal{B}| \times |X|$ telle que:

$$M_{i,j} = \left\{ \begin{array}{ll} 1 & \text{si } x_j \in B_i \\ 0 & \text{sinon} \end{array} \right.$$

Le code C engendré par T sur \mathbb{F}_q est le code sur \mathbb{F}_q dont M est une matrice de parité.

Code engendré par un TD

Soit $\mathcal{T} = (X, \mathcal{B}, \mathcal{G})$ un $\mathrm{TD}(\ell, s)$. On définit sa **matrice d'incidence** comme la matrice M de taille $|\mathcal{B}| \times |X|$ telle que:

$$M_{i,j} = \left\{ \begin{array}{ll} 1 & \text{si } x_j \in B_i \\ 0 & \text{sinon} \end{array} \right.$$

Le **code** C **engendré par** T **sur** \mathbb{F}_a est le code sur \mathbb{F}_a dont M est une matrice de parité.

Propriété importante :

▶ pour tout $i \neq j \in [1, n]$, si i et j ne sont pas dans le même groupe, alors il existe un mot $h \in H_{\ell}(i, j)$.

11/18 J. Lavauzelle IC2 2017

- 1. Problématique et définitions
- Protocoles de PIR avec des codes à propriétés locales
- Designs transversaux et leurs codes
- 4. Protocoles de PIR fondés sur des designs transversaux
- Instances et généralisation

Définition du protocole de PIR

Soit $\mathcal{C} \subseteq \mathbb{F}_q^n$ le code engendré par un $\mathrm{TD}(\ell,s)$.

Initialisation. L'utilisateur encode son fichier F avec C, et distribue à chaque serveur S_j le sous-mot $c_{|G_j}$ associé au groupe G_j .

Définition du protocole de PIR

Soit $\mathcal{C} \subseteq \mathbb{F}_q^n$ le code engendré par un $\mathrm{TD}(\ell,s)$.

Initialisation. L'utilisateur encode son fichier F avec C, et distribue à chaque serveur S_j le sous-mot $c_{|G_j}$ associé au groupe G_j .

Pour retrouver $F_i = c_i$:

1. l'utilisateur tire aléatoirement un bloc $B \in \mathcal{B}$, et définit :

$$q_j = \mathcal{Q}(i)_j = \left\{ egin{array}{ll} B \cap G_j & ext{si } i
otin G_j \ ext{un point al\'eatoire de } G_j & ext{sinon} \end{array}
ight.$$

- 2. chaque serveur S_j renvoie $a_j = \mathcal{A}(q_j, c_{|G_j}) = c_{q_j}$
- 3. l'utilisateur reconstruit

$$c_i = -\sum_{i \notin G_j} c_{q_j}$$

Théorème. Si les serveurs ne coopèrent pas, alors ce protocole de PIR est inconditionnellement sûr.

Théorème. Si les serveurs ne coopèrent pas, alors ce protocole de PIR est inconditionnellement sûr.

Preuve:

- le serveur qui détient i reçoit une requête aléatoire,
- pour un autre serveur S_i , le nombre de blocs passant par i et l'un des points de son groupe G_i est constant $(=1) \Rightarrow$ aucune information sur i.

J. Lavauzelle IC2 2017

Théorème. Si les serveurs ne coopèrent pas, alors ce protocole de PIR est inconditionnellement sûr.

Preuve:

- le serveur qui détient i reçoit une requête aléatoire,
- pour un autre serveur S_i , le nombre de blocs passant par i et l'un des points de son groupe G_i est constant $(=1) \Rightarrow$ aucune information sur i.

Propriétés. Pour un fichier de $k \log q$ bits, où $k = \dim_{\mathbb{F}_q} \mathcal{C} \le n = s\ell$.

- ▶ communication : $\ell(\log s + \log q)$ bits
- calcul:
 - ▶ constant pour les réponses \mathcal{A} (au lieu de $\Omega(k \log q)$)
 - lacktriangle une somme de $\ell-1$ éléments de \mathbb{F}_q pour la reconstuction $\mathcal R$
- ▶ stockage : $(n k) \log q$ bits de redondance (au lieu de $(\ell 1)k \log q$)

Théorème. Si les serveurs ne coopèrent pas, alors ce protocole de PIR est inconditionnellement sûr.

Preuve:

- le serveur qui détient i reçoit une requête aléatoire,
- pour un autre serveur S_i , le nombre de blocs passant par i et l'un des points de son groupe G_i est constant $(=1) \Rightarrow$ aucune information sur i.

Propriétés. Pour un fichier de $k \log q$ bits, où $k = \dim_{\mathbb{F}_q} \mathcal{C} \le n = s\ell$.

- ▶ communication : $\ell(\log s + \log q)$ bits
- calcul:
 - ▶ constant pour les réponses \mathcal{A} (au lieu de $\Omega(k \log q)$)
 - lacktriangle une somme de $\ell-1$ éléments de \mathbb{F}_q pour la reconstuction $\mathcal R$
- ▶ stockage : $(n k) \log q$ bits de redondance (au lieu de $(\ell 1)k \log q$)

Question majeure : $k = \dim_{\mathbb{F}_q} \mathcal{C}$ en fonction de ℓ , n?

- 1. Problématique et définitions
- 2. Protocoles de PIR avec des codes à propriétés locales
- Designs transversaux et leurs codes
- 4. Protocoles de PIR fondés sur des designs transversaux
- 5. Instances et généralisation

L'instance classique : droites et hyperplans

Soient:

- $X = \mathbb{F}_a^m$,
- \triangleright \mathcal{G} un ensemble de q hyperplans qui partitionnent X,
- \triangleright $\mathcal{B} = \{$ droites affines non incluses dans un des hyperplans de $\mathcal{G}\}.$

L'instance classique : droites et hyperplans

Soient:

- $X = \mathbb{F}_q^m$
- \triangleright \mathcal{G} un ensemble de q hyperplans qui partitionnent X,
- \triangleright $\mathcal{B} = \{$ droites affines non incluses dans un des hyperplans de $\mathcal{G}\}.$

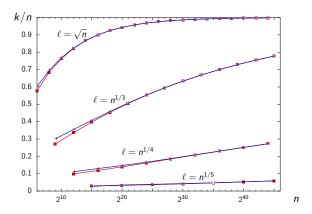
Code associé?

- ▶ longueur $n = q^m$
- "localité" $\ell = q$
- ▶ dimension ? La matrice de parité a q^m colonnes et q^{2m-2} lignes, et on la veut de faible rang...

L'instance classique : droites et hyperplans

Exemple : pour m=2 et q=4096, on a $n/k \simeq 1,03$.

 \Rightarrow accès confidentiel à un fichier de \simeq 2 Mo, avec une communication de 6 ko, et seulement 3% de redondance sur les serveurs.



Un tableau orthogonal de force t (orthogonal array $OA(t, \ell, s)$) est un code sur S, |S| = s, de longueur ℓ , de cardinal N et de distance duale $d^{\perp} = t + 1$.

J. Lavauzelle JC2 2017

Un tableau orthogonal de force t (orthogonal array $OA(t, \ell, s)$) est un code sur S, |S| = s, de longueur ℓ , de cardinal N et de distance duale $d^{\perp} = t + 1$.

$$OA = \left[\begin{array}{ccc} a & b & b \\ b & b & a \\ b & a & b \\ a & a & a \end{array} \right]$$

Un tableau orthogonal de force t (orthogonal array $OA(t, \ell, s)$) est un code sur S, |S| = s, de longueur ℓ , de cardinal N et de distance duale $d^{\perp}=t+1$.

Construction $OA \rightarrow TD$:

$$X = S \times [1, \ell]$$

▶
$$G = \{S \times \{i\}, i \in [1, \ell]\}$$

$$OA = \left[\begin{array}{ccc} a & b & b \\ b & b & a \\ b & a & b \\ a & a & a \end{array} \right]$$

$$(a,1)$$
 $(a,2)$ $(a,3)$

$$(b,1)$$
 $(b,2)$ $(b,3)$

Un tableau orthogonal de force t (orthogonal array $OA(t, \ell, s)$) est un code sur S, |S| = s, de longueur ℓ , de cardinal N et de distance duale $d^{\perp}=t+1$.

Construction $OA \rightarrow TD$:

$$X = S \times [1, \ell]$$

▶
$$G = \{S \times \{i\}, i \in [1, \ell]\}$$

$$\mathcal{B} = \{\{(c_i, i), 1 \leq i \leq \ell\}, c \in \mathrm{OA}\}\$$

$$OA = \begin{bmatrix} a & b & b \\ b & b & a \\ b & a & b \\ a & a & a \end{bmatrix}$$

$$(a,1) \qquad (a,2) \qquad (a,3)$$

$$(b,1) \qquad (b,2) \longrightarrow (b,3)$$

$$(b,1)$$
 $(b,2)$ — $(b,3)$

Un tableau orthogonal de force t (orthogonal array $OA(t, \ell, s)$) est un code sur S, |S| = s, de longueur ℓ , de cardinal N et de distance duale $d^{\perp} = t + 1$.

Construction $OA \rightarrow TD$:

- $X = S \times [1, \ell]$
- ▶ $\mathcal{B} = \{\{(c_i, i), 1 \le i \le \ell\}, c \in OA\}$

$$OA = \begin{bmatrix} a & b & b \\ b & b & a \\ b & a & b \\ a & a & a \end{bmatrix}$$

$$(a,1)$$
 $(a,2)$ $(a,3)$ $(b,1)$ $(b,2)$ $(b,3)$

Un tableau orthogonal de force t (orthogonal array $OA(t, \ell, s)$) est un code sur S, |S| = s, de longueur ℓ , de cardinal N et de distance duale $d^{\perp} = t + 1$.

Construction $OA \rightarrow TD$:

$$X = S \times [1, \ell]$$

▶
$$\mathcal{B} = \{\{(c_i, i), 1 \le i \le \ell\}, c \in OA\}$$

Prop. Si t = 2, on obtient un $TD(\ell, s)$.

$$OA = \begin{bmatrix} a & b & b \\ b & b & a \\ b & a & b \\ a & a & a \end{bmatrix}$$

$$(a,1)$$
 $(a,2)$ $(a,3)$ $(b,1)$ $(b,2)$ $(b,3)$

Résistance aux collusions

Et pour t > 2 ?

Il existe un bloc passant par chaque t-uplet de positions appartenant à t groupes différents.

 \Rightarrow Le protocole de PIR résistera à la collusion de t-1 serveurs.

Résistance aux collusions

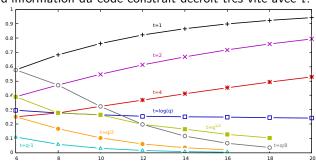
Et pour t > 2 ?

Il existe un bloc passant par chaque t-uplet de positions appartenant à t groupes différents.

 \Rightarrow Le protocole de PIR résistera à la collusion de t-1 serveurs.

En pratique :

Le taux d'information du code construit décroît très vite avec t.



Conclusion

Contribution:

- ▶ La matrice d'incidence d'un design transversal fournit un encodage efficace pour un protocole de PIR.
- ▶ Une construction de TD à base de tableaux orthogonaux de force t donne une résistance à la collusion de t-1 serveurs.

J. Lavauzelle IC2 2017

Conclusion

Contribution:

- ▶ La matrice d'incidence d'un design transversal fournit un encodage efficace pour un protocole de PIR.
- ▶ Une construction de TD à base de tableaux orthogonaux de force t donne une résistance à la collusion de t-1 serveurs.

Question (très) ouverte : peut-on caractériser les designs transversaux (ou les tableaux orthogonaux qui les définissent) donnant les meilleurs codes?

18/18 I Lavauzelle IC2 2017

Conclusion

Contribution:

- ► La matrice d'incidence d'un design transversal fournit un encodage efficace pour un protocole de PIR.
- ▶ Une construction de TD à base de tableaux orthogonaux de force t donne une résistance à la collusion de t-1 serveurs.

Question (très) ouverte : peut-on caractériser les designs transversaux (ou les tableaux orthogonaux qui les définissent) donnant les meilleurs codes ?

Merci!