Adaptive Oblivious Transfer with Access Control for Branching Programs

Benoît Libert^{1,2} San Ling³ **Fabrice Mouhartem**¹ Khoa Nguyen³ Huaxiong Wang³

¹École Normale Supérieure de Lyon, ²CNRS, ³Nanyang Technological University (Singapore)

Journées du GT-C2, La Bresse, 25 Avril 2017

(Adaptive) Oblivious Transfer (OT) [Chau81]

(Adaptive) Oblivious Transfer (OT) [Chau81]

► Complete building block of cryptography [GMW87]

(Adaptive) Oblivious Transfer (OT) [Chau81]

- Complete building block of cryptography [GMW87]
- ► Adaptive OT: receiver adaptively obtains k messages [NP93]
 - Usage: Sensitive DB (DNA, financial data,...).

- 1981 Chaum: introduction
- 1985 Even, Goldreich and Lempel: extension

- 1981 Chaum: introduction
- 1985 Even, Goldreich and Lempel: extension
- 1987 Goldreich, Micali and Wigderson: OT implies MPC

- 1981 Chaum: introduction
- 1985 Even, Goldreich and Lempel: extension
- 1987 Goldreich, Micali and Wigderson: OT implies MPC
- 1993 Naor and Pinkas: adaptive OT
- 2007 Camenisch, Neven and shelat: assisted decryption
- 2008 Green and Hohenberger: adaptive OT in the UC model

2011 Green and Hohenberger: adaptive OT from pairing

- 1981 Chaum: introduction
- 1985 Even, Goldreich and Lempel: extension
- 1987 Goldreich, Micali and Wigderson: OT implies MPC
- 1993 Naor and Pinkas: adaptive OT
- 2007 Camenisch, Neven and shelat: assisted decryption
- 2008 Green and Hohenberger: adaptive OT in the UC model
- 2009 Camenisch, Dubovitskaya and Neven: access control
- 2011 Green and Hohenberger: adaptive OT from pairing
- ► From FHE + OPRF, or PIR, or ad-hoc pairing assumptions...

No fully simulatable adaptive OT with access control from lattice assumptions

Lattice-Based Cryptography [Ajt96, Reg05]

Lattice

A lattice is a discrete subgroup of \mathbb{R}^n . Can be seen as integer linear combinations of a finite set of vectors.

$$\Lambda(\mathbf{b}_1,\ldots,\mathbf{b}_n) = \left\{\sum_{i\leq n} a_i \mathbf{b}_i \mid a_i \in \mathbb{Z}
ight\}$$

Lattice-Based Cryptography [Ajt96, Reg05]

Lattice

A lattice is a discrete subgroup of \mathbb{R}^n . Can be seen as integer linear combinations of a finite set of vectors.

$$\Lambda(\mathbf{b}_1,\ldots,\mathbf{b}_n) = \left\{\sum_{i\leq n} a_i \mathbf{b}_i \mid a_i \in \mathbb{Z}\right\}$$

Why?

- Simple and asymptotically efficient;
- ► Still conjectured quantum-resistant;
- Connection between average-case and worst-case problems;
- ► Powerful functionalities (e.g., FHE).

 \rightarrow Finding a short non-zero vector in a lattice is hard.

 Fabrice Mouhartem
 Adaptive Oblivious Transfer with Access Control for Branching Programs
 25/04/2017
 4/21

Hardness Assumptions: SIS and LWE [Ajt96, Reg05]

Parameters: *n* dimension, $m \ge n$, *q* modulus. For $A \leftarrow \mathcal{U}(\mathbb{Z}_q^{m \times n})$:

Full Simulation Model [Can01]

For any cheating $\widehat{\mathcal{A}},$ there exists $\widehat{\mathcal{A}}'$ s.t.

$$View(\mathcal{E}^{\mathsf{real}}) \approx_s View(\mathcal{E}^{\mathsf{ideal}})$$

Strictly stronger security model than indistinguishability-based one

Fabrice Mouhartem

Adaptive Oblivious Transfer with Access Control for Branching Programs 25/04/2017 6

6/21

Assisted Decryption Technique [CNs07]

	Transfer _i	
Sender		Receiver
		Sample μ at random
		$C_i \leftarrow Rerand(EC_{ ho_i}, \mu)$
		$= Enc(M_{ ho_i} \oplus \mu)$
	$\leftarrow C_i$	

Assisted Decryption Technique [CNs07]

Assisted Decryption Technique [CNs07]

+ Zero-knowledge proofs compatible with the PKE (Keygen, Enc, Dec, Rerand)

Regev's Encryption [Reg05]

Keygen:

Secret key: $\mathbf{S} \leftrightarrow \chi^{n \times t}$ Public key: (\mathbf{F}, \mathbf{P}) s.t. $\mathbf{F} \leftrightarrow U(\mathbb{Z}_q^{n \times m})$, $\mathbf{P} = \mathbf{F}^T \mathbf{S} + \mathbf{E}$ with $\mathbf{E} \leftarrow \chi^{m \times t}$

Encryption: $(\mathbf{a}, \mathbf{b}) = (\mathbf{a}, \mathbf{S}^T \mathbf{a} + \mathbf{x} + M \lfloor \frac{q}{2} \rfloor) \in \mathbb{Z}_q^n \times \mathbb{Z}_q^t$ Decryption: $M = \lfloor (\mathbf{b} - \mathbf{S}^T \cdot \mathbf{a}) / (\frac{q}{2}) \rfloor$ Rerand: $(\mathbf{a}', \mathbf{b}') = (\mathbf{a} + \mathbf{F} \mathbf{e}, \mathbf{b} + \mathbf{P}^T \mathbf{e} + \mu \lfloor \frac{q}{2} \rfloor) = Enc(M \oplus \mu)$

Regev's Encryption [Reg05]

Keygen:

Secret key: $\mathbf{S} \leftrightarrow \chi^{n \times t}$ Public key: (\mathbf{F}, \mathbf{P}) s.t. $\mathbf{F} \leftrightarrow U(\mathbb{Z}_q^{n \times m})$, $\mathbf{P} = \mathbf{F}^T \mathbf{S} + \mathbf{E}$ with $\mathbf{E} \leftarrow \chi^{m \times t}$

Encryption: $(\mathbf{a}, \mathbf{b}) = (\mathbf{a}, \mathbf{S}^T \mathbf{a} + \mathbf{x} + M \lfloor \frac{q}{2} \rfloor) \in \mathbb{Z}_q^n \times \mathbb{Z}_q^t$ Decryption: $M = \lfloor (\mathbf{b} - \mathbf{S}^T \cdot \mathbf{a}) / (\frac{q}{2}) \rceil$ Rerand: $(\mathbf{a}', \mathbf{b}') = (\mathbf{a} + \mathbf{F} \mathbf{e}, \mathbf{b} + \mathbf{P}^T \mathbf{e} + \mu \lfloor \frac{q}{2} \rfloor) = Enc(M \oplus \mu)$

+ ZK proofs

Smudging [AJL+12]

Problem

The sender only proves bounded noise \mathbf{x} for Regev encryption.

Smudging [AJL+12]

Problem

The sender only proves bounded noise \boldsymbol{x} for Regev encryption.

Attack scenario:

- ▶ $\mathsf{DB} = (M_0, M_1)$
- Sender encrypts M_0 with noise \mathbf{x}_0 and M_1 with noise \mathbf{x}_1 s.t. $\|\mathbf{x}_0\| \ll \|\mathbf{x}_1\| \le B_{\chi}$
- Upon receiving $(\mathbf{c}_0, \mathbf{c}_1)$, decryption leaks $\|\mathbf{x}_i + \mathbf{e}\|$
- \Rightarrow sender can break receiver messages' anonymity

Smudging [AJL+12]

Problem

The sender only proves bounded noise \mathbf{x} for Regev encryption.

Attack scenario:

- ► $DB = (M_0, M_1)$
- Sender encrypts M_0 with noise \mathbf{x}_0 and M_1 with noise \mathbf{x}_1 s.t. $\|\mathbf{x}_0\| \ll \|\mathbf{x}_1\| < B_{\gamma}$
- Upon receiving $(\mathbf{c}_0, \mathbf{c}_1)$, decryption leaks $\|\mathbf{x}_i + \mathbf{e}\|$
- \Rightarrow sender can break receiver messages' anonymity

Solution: Flood the noise with ν s.t. $\|\nu\| \gg B_{\gamma}$.

Rerand:
$$(\mathbf{a}', \mathbf{b}') = (\mathbf{a} + \mathbf{F} \mathbf{e}, \mathbf{b} + \mathbf{P}^T \mathbf{e} + \mu \lfloor \frac{q}{2} \rfloor + \nu)$$

Fabrice Mouhartem

Access Control [CDN09]

AC-OT

Encrypted database consists in $(EC_i, AP_i)_{i=1}^N$.

Receiver can retrieve message M_i iff it possesses cert_x for some $x \in \{0, 1\}^*$ s.t. $AP_i(x) = 1$.

Access Control [CDN09]

AC-OT

Encrypted database consists in $(EC_i, AP_i)_{i=1}^N$.

Receiver can retrieve message M_i iff it possesses cert_x for some $x \in \{0, 1\}^*$ s.t. $AP_i(x) = 1$.

[ACDN13]: access policy made of conjunctions: $x_1 \land \ldots \land x_\ell$. Disjunctions possible through replication.

[ZAW+10]: use CP-ABE to handle NC^1 access policies.

Access Control [CDN09]

AC-OT

Encrypted database consists in $(EC_i, AP_i)_{i=1}^N$.

Receiver can retrieve message M_i iff it possesses $cert_x$ for some $x \in \{0, 1\}^*$ s.t. $AP_i(x) = 1$.

[ACDN13]: access policy made of conjunctions: $x_1 \land \ldots \land x_\ell$. Disjunctions possible through replication.

[ZAW+10]: use CP-ABE to handle NC^1 access policies.

Here: access policy made of branching program (BP).

x = 010: accepted

x = 010: accepted y = 101: rejected

x = 010: accepted[Barr86]: polynomially-long BPy = 101: rejectedare equivalent to NC1

$$\{(EC_1, BP_1), (EC_2, BP_2), \dots, (EC_N, BP_N)\}.$$

Goal: Prove knowledge of $cert_x = Sign(x)$ s.t. $\exists i : BP_i(x) = 1$.

$$\{(EC_1, BP_1), (EC_2, BP_2), \dots, (EC_N, BP_N)\}.$$

Goal: Prove knowledge of $cert_x = Sign(x)$ s.t. $\exists i : BP_i(x) = 1$.

Statements over BP interact well with Stern's protocol [Ste93].

Encoding of a branching program:

$$\mathbf{z}_{BP} = (d_{1,1}, \dots, d_{1,\delta_{\kappa}}, \dots, d_{L,1}, \dots, d_{L,\delta_{\kappa}}, \pi_{1,0}(0), \dots, \pi_{1,0}(4), \pi_{1,1}(0), \dots, \pi_{1,1}(4), \dots, \pi_{L,0}(0) \dots, \pi_{L,0}(4), \pi_{L,1}(0) \dots, \pi_{L,1}(4)) \in [0,4]^{\zeta}$$

 $d_{\theta,1}, \ldots, d_{\theta,\delta_{\kappa}}$: bit representation of $var(\theta)$

Proving correct evaluation

Naively: prove each step $\rightarrow O(L \cdot \kappa)$

Encoding of a branching program:

$$\mathbf{z}_{BP} = (d_{1,1}, \dots, d_{1,\delta_{\kappa}}, \dots, d_{L,1}, \dots, d_{L,\delta_{\kappa}}, \pi_{1,0}(0), \dots, \pi_{1,0}(4), \pi_{1,1}(0), \dots, \pi_{1,1}(4), \dots, \pi_{L,0}(0) \dots, \pi_{L,0}(4), \pi_{L,1}(0) \dots, \pi_{L,1}(4)) \in [0,4]^{\zeta}$$

 $d_{\theta,1}, \ldots, d_{\theta,\delta_{\kappa}}$: bit representation of $var(\theta)$

Proving correct evaluation

Naively: prove each step $\rightarrow O(L \cdot \kappa)$

Our idea: use binary-search $\rightarrow O(L \cdot \log(\kappa))$

$$\operatorname{com}_i = \operatorname{Com}(x_i)$$

 $com_i = Com(x_i) \rightarrow correct binary search \Rightarrow knowledge of x_{var(\theta)}$

Fabrice Mouhartem Adapti

Adaptive Oblivious Transfer with Access Control for Branching Programs 25/04/2017 14/21

Stern's Protocol (Crypto'93)

Stern's protocol is a ZK proof for Syndrome Decoding Problem.

Stern's Protocol (Crypto'93)

Stern's protocol is a ZK proof for Syndrome Decoding Problem.

Stern's Protocol (Crypto'93)

Stern's protocol is a ZK proof for Syndrome Decoding Problem.

[KTX08]: mod $2 \rightarrow \mod q$

[LNSW13]: Extends Stern's protocol for SIS and LWE statements

Recent uses of Stern-like protocols in lattice-based crypto: [LNW15, LLNW16, LLNMW16]

Our Construction

Ingredients

- The assisted decryption technique
- ► A simplification of [LLNMW16]'s signature as certificate
- Access control using BP
- ▶ WI proofs à la Stern

Initialization

Sender side:

- 1. Generate $(VK_{sig}, SK_{sig}) \leftarrow \Sigma.keygen(1^{\lambda})$
- 2. Compute $((\mathbf{S}, \mathbf{E}), (\mathbf{F}, \mathbf{P})) \leftarrow Regev.keygen(1^{\lambda})$
- 3. Use **S** to compute encryptions of $M_i \to (\mathbf{a}_i, \mathbf{b}_i) \in \mathbb{Z}_q^n \times \mathbb{Z}_q^t$
- 4. Use SK_{sig} to compute signatures of $(\mathbf{a}_i, \mathbf{b}_i) \rightarrow \sigma_i$
- 5. $EC_i \leftarrow (\sigma_i, (\mathbf{a}_i, \mathbf{b}_i))$

Initialization

Sender side:

- 1. Generate $(\mathsf{VK}_{\textit{sig}},\mathsf{SK}_{\textit{sig}}) \leftarrow \Sigma.\textit{keygen}(1^{\lambda})$
- 2. Compute $((\mathbf{S}, \mathbf{E}), (\mathbf{F}, \mathbf{P})) \leftarrow Regev.keygen(1^{\lambda})$
- 3. Use **S** to compute encryptions of $M_i \to (\mathbf{a}_i, \mathbf{b}_i) \in \mathbb{Z}_q^n \times \mathbb{Z}_q^t$
- 4. Use SK_{sig} to compute signatures of $(\mathbf{a}_i, \mathbf{b}_i) \rightarrow \sigma_i$
- 5. $EC_i \leftarrow (\sigma_i, (\mathbf{a}_i, \mathbf{b}_i))$

Sender sends $(VK_{sig}, (\mathbf{F}, \mathbf{P}), EC_i)$ to the receiver and proves that everything was done correctly.

Sender keeps the previous information and (${\sf S}$, ${\sf E}$).

Transfer

Transfer

Final steps

Access control can be plug over this scheme

Final steps

- Access control can be plug over this scheme
- ► Our scheme is proven secure in the standard model
 - In the ROM: optimizations using NIWI proofs [FS86]

Conclusion

- First AC-OT in the lattice setting that handles expressive statements (NC¹)
- Rely on LWE with superpolynomial modulus
- Proved in the full simulation model

Possible improvements:

Get rid of the smudging technique

Questions?

