
Running compression algorithms in the encrypted
domain: a case-study on the homomorphic

execution of RLE

Donald Nokam Kuate

Sebastien Canard
Sergiu Carpov
Renaud Sirdey

28 avril 2017

Agenda

Homomorphic encryption
De�nition
Exemples and applications

Armadillo compiler
Infos compiler
General structure

Run-Length Encoding (RLE)
De�nition RLE
Regularization of RLE
Improvements and results

Homomorphic encryption (HE)

Encryption

Homomorphic encryption (HE)

HF1: homomorphic concat & scale function

Homomorphic evaluation
Encryption

HF1

Homomorphic encryption (HE)

HF1: homomorphic concat & scale function

Homomorphic evaluation
Encryption

Decryption

HF1

Homomorphic encryption (HE)

F1: concatenation & scale function
HF1: homomorphic concat & scale function

Clear evaluation

Homomorphic evaluation
Encryption

Decryption

F1 HF1

Examples and applications of HE

Examples

I partially HE (∞“ + ” or ∞“× ”) :
I RSA, ElGamal, Paillier

I somewhat HE (∞“ + ” and �nite “× ”) :
I YASHE, FV, BGV

I fully HE (∞“ + ” and ∞“× ”) : �rst time de�ne in 2009 by
Craig Gentry who introduces bootstrapping.
Fully HE = somewhat HE+bootstrapping.

Applications

I cloud computing ;

I electronic voting ;

I video transcoding and image processing.

Examples and applications of HE

Examples

I partially HE (∞“ + ” or ∞“× ”) :
I RSA, ElGamal, Paillier

I somewhat HE (∞“ + ” and �nite “× ”) :
I YASHE, FV, BGV

I fully HE (∞“ + ” and ∞“× ”) : �rst time de�ne in 2009 by
Craig Gentry who introduces bootstrapping.
Fully HE = somewhat HE+bootstrapping.

Applications

I cloud computing ;

I electronic voting ;

I video transcoding and image processing.

Agenda

Homomorphic encryption
De�nition
Exemples and applications

Armadillo compiler
Infos compiler
General structure

Run-Length Encoding (RLE)
De�nition RLE
Regularization of RLE
Improvements and results

Armadillo compiler

Armadillo

I Compiler developed by CEA ;

I developed in C++ ;

I use the FV homomorphic scheme, but other HE scheme too ;

I the main operations are +, ×, and x = c?a : b

General structure of Armadillo

input
binary
input

Enc.
binary
input

C++
code

binary
circuit

op
binary
circuit

Enc.
output

output

Binarization Encryption

Optimization
Execution

Decryption

Binarization

Output

Figure � General structure of Armadillo

Agenda

Homomorphic encryption
De�nition
Exemples and applications

Armadillo compiler
Infos compiler
General structure

Run-Length Encoding (RLE)
De�nition RLE
Regularization of RLE
Improvements and results

RLE

RLE

Is a lossless data compression algorithm, which consists in
transforming a sequence of symbols where some symbols have a
consecutive repetition, in a sequence of (symbol, counter) much
shorter.

Example

The sequence LLLLLLLUUUUKKKKKKKKEEEEEEEEEE is
transformed in (L, 7), (U, 4), (K, 8), (E, 10).

Applications

I loss or lossless image compressing (BMP, JPEG) ;

I MPEG and H26x video compressing.

RLE

RLE

Is a lossless data compression algorithm, which consists in
transforming a sequence of symbols where some symbols have a
consecutive repetition, in a sequence of (symbol, counter) much
shorter.

Example

The sequence LLLLLLLUUUUKKKKKKKKEEEEEEEEEE is
transformed in (L, 7), (U, 4), (K, 8), (E, 10).

Applications

I loss or lossless image compressing (BMP, JPEG) ;

I MPEG and H26x video compressing.

RLE

RLE

Is a lossless data compression algorithm, which consists in
transforming a sequence of symbols where some symbols have a
consecutive repetition, in a sequence of (symbol, counter) much
shorter.

Example

The sequence LLLLLLLUUUUKKKKKKKKEEEEEEEEEE is
transformed in (L, 7), (U, 4), (K, 8), (E, 10).

Applications

I loss or lossless image compressing (BMP, JPEG) ;

I MPEG and H26x video compressing.

RLE regularization for Armadillo

A pseudo-code of RLE is :

RLE regularization for Armadillo

Steps of regularization

I make incrementation of i constant and transform the while
loop ;

RLE regularization for Armadillo

Steps of regularization

I make incrementation of i constant and transform the while
loop ;

RLE regularization for Armadillo

Steps of regularization

I condition the counter j ;

RLE regularization for Armadillo

Steps of regularization

I condition the counter j ;

RLE regularization for Armadillo

Steps of regularization

I condition the outputs ;
I set a �x rate of compression ;
I referencement on encrypted indeces ;

RLE regularization for Armadillo

RLE regularization for Armadillo

output_ctr[k] = j
output_chr[k] = input[i-1]

First results

First results

symbols # pairs depth times(min)

10 5 22 7.20

16 5 28 21.0

64 8 75 -

Table � Depth of homomorphic RLE in function of number of symbols
and number of output pairs on 2 core cpu and 3.00GHz machine

Remarks

I k = intput[i] == intput[i-1] ?k :k+1 (line 23)
I # symbols = 10 → depth = 17
I # symbols = 64 → depth = 70

I j = intput[i] == intput[i-1] ?j+1 :1 (same as for k)

First results

First results

symbols # pairs depth times(min)

10 5 22 7.20

16 5 28 21.0

64 8 75 -

Table � Depth of homomorphic RLE in function of number of symbols
and number of output pairs on 2 core cpu and 3.00GHz machine

Remarks

I k = intput[i] == intput[i-1] ?k :k+1 (line 23)
I # symbols = 10 → depth = 17
I # symbols = 64 → depth = 70

I j = intput[i] == intput[i-1] ?j+1 :1 (same as for k)

Improvements

First improvement

Change line
k = intput[i] == intput[i-1] ?k :k+1 by
k+=input[i] !=input[i-1] ;
the depth down to 8 for 10 symbols and to 10 for 64 symbols

Second improvement

Change line
j = intput[i] == intput[i-1] ? j+1 :1 by
j = 1 + j&(input[i] !=input[i-1]) and remark that if we set
bi = input[i] !=input[i-1] then

j = 1+
i∑

l=1

i∏
m=l

bm.

The depth down to 11 for 10 symbols and to 14 for 64 symbols

Improvements

First improvement

Change line
k = intput[i] == intput[i-1] ?k :k+1 by
k+=input[i] !=input[i-1] ;
the depth down to 8 for 10 symbols and to 10 for 64 symbols

Second improvement

Change line
j = intput[i] == intput[i-1] ? j+1 :1 by
j = 1 + j&(input[i] !=input[i-1]) and remark that if we set
bi = input[i] !=input[i-1] then

j = 1+
i∑

l=1

i∏
m=l

bm.

The depth down to 11 for 10 symbols and to 14 for 64 symbols

Second results

symbols # pairs depth(old) depth (new) new times(min)

10 5 22 14 2.30

16 5 28 20 10.45

64 8 75 63 -

Table � Second results : depth of homomorphic RLE in function of
number of symbols and number of output pairs on 2 core cpu and

3.00GHz machine

Remark

The algorithm depth is reduced, but still not yet enough.
This is due to lines
output_chr[l]=(k==l) ?input[i-1] :output_chr[l] (line 20) ;
output_ctr[l] = (k==l) ?j :output_ctr[l] (line 21) ;

Second results

symbols # pairs depth(old) depth (new) new times(min)

10 5 22 14 2.30

16 5 28 20 10.45

64 8 75 63 -

Table � Second results : depth of homomorphic RLE in function of
number of symbols and number of output pairs on 2 core cpu and

3.00GHz machine

Remark

The algorithm depth is reduced, but still not yet enough.
This is due to lines
output_chr[l]=(k==l) ?input[i-1] :output_chr[l] (line 20) ;
output_ctr[l] = (k==l) ?j :output_ctr[l] (line 21) ;

Improvement

Third improvement

The lines 20 and 21 have the same structure which is of the form
c
(i)
l =

(
l == k(i)

)
?xi−1 : c

i−1
l

When we develop, we obtain the following expression

c
(i)
l = c0 + (c0 + xi−1)b

(i)
l

+
i−1∑
j=1

(c0 + xj−1) b
(j)
l

1+
∑

K∈P(j+1,...,i)

(∏
u∈K

b
(u)
l

)
where b

(i)
l =

(
l == k(i)

)
, c0 = c

(0)
l .

This development allow us to drop the depth to the theoretical
value of 12+ log2 (N + 1), N = sequence length.

Conclusion

I DO
I regularized and executed the RLE algorithm in the

homomorphic domain ;
I improved its depth ;

I TO DO
I try to reach this theoretical detph ;
I improved the other block from either side of RLE in video

compressing.

Thanks !

Questions ?

	Homomorphic encryption
	Definition
	Exemples and applications

	Armadillo compiler
	Infos compiler
	General structure

	Run-Length Encoding (RLE)
	Definition RLE
	Regularization of RLE
	Improvements and results

