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Structure-Preserving Encryption (informal)

Over groups (G, Ĝ) with efficiently computable bilinear map

e : G× Ĝ→ GT .

Ciphertexts and public keys are elements of the source group G or Ĝ.

All cryptographic operations are group operation and pairing
(e.g. no hash function).

Motivation

Smooth combination with Groth-Sahai (NIWI) proofs.
(witness extraction always possible)

Example

1 Secure blind decryption [Gre11]

2 Oblivious 3rd parties protocols [CGH08]
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Secure blind decryption [Gre11]

SKB

EncPKB
(m)

EncPKB
(m)

LEncPKA
(EncPKB

(m)), πCiphertext

LEncPKA
(m), πDec

Public verifiability

Allows adaptive OT with public contribution to database.

Allows everyone to check the sanity of the database.

Makes it possible to distribute senders.
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Indistinguishable Chosen-Ciphertext security (IND-CCA)

IND-CCA

PK
Ci
mi

m0,m1

Cb{Cj} 6= Cb

mi
b′

Advantage: Adv(A) = |Pr[b = b′]− 1
2 |.
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Replayable Chosen-Ciphertext security (RCCA)

RCCA

PK
Ci
mi

m0,m1

Cb
Cond∗

mi
b′

Advantage: Adv(A) = |Pr[b = b′]− 1
2 |.

Motivation: Compatible with perfect rerandomizable encryption
scheme.

Optimal security notion for rerandomizable encryption schemes

∗Dec(kd , {Cj}) 6∈ {m0,m1}
7 / 22



Type-3 pairings and DDH (SXDH) assumption

Pairing

For three groups (G, Ĝ,GT ) of prime order p and e : G× Ĝ→ GT .

e(Aλ,B) = e(A,Bλ) e(g , h) = 1 iff g = 1 ∨ h = 1

No computable isomorphism between G and Ĝ
Most efficient pairing configuration

DDH (SXDH) assumption

Let g ∈ G and a, b, c
R← Zp

Decisional Diffie-Hellman (DDH):

{g , ga, gb, gab} ≈c {g , ga, gb, g c}.

Symmetric eXternal Diffie-Hellman (SXDH): DDH in G and Ĝ.
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State of the art

Structure-Preserving Signatures

[AHO10] Sign a message M = (m1,m2, . . . ,mn) ∈ Ĝn with
a signature 2G + 5Ĝ under SXDH with asymmetric pairings.

Structure-Preserving Public Key Encryption

[CHK+11] Encryption of a message m ∈ G consists of 4G + 1GT

under DLIN with symmetric pairings; not publicly verifiable.

[ADK+13] Structure-preserving publicly verifiable encryption with
321G under DLIN.

Our goals

Shorter ciphertexts under SXDH in asymmetric pairings
(most efficient configuration)

Public verifiability
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Contributions

Ciphertext Size† Assumption Security

[ADK+13] 321×G‡ DLIN CCA

This work 16×G + 11× Ĝ SXDH CCA

[CKLM12] 93×G DLIN RCCA

[CKLM12] 49×G + 20× Ĝ SXDH RCCA

This work§ 29×G + 20× Ĝ SXDH RCCA

†In the asymmetric setting, we assume |Ĝ| ≈ 2 · |G|.
‡Only instantiable with symmetric pairing
§Instantiation of their generic construction with the more efficient tools to date.
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Groth-Sahai Proof Systems
Only efficient NIZK proofs in the standard model for now.

Statement: Pairing Product Equation (PPE)

n∏
j=1

e(Aj ,Yj)
m∏
i=1

e(Xi ,Bi )
m∏
i=1

n∏
j=1

e(Xi ,Yj)γi,j = tT

Statement: Multi-Exponentiation Equation

n∏
j=1

Ayj
j

m∏
i=1

Xi
bi

m∏
i=1

n∏
j=1

Xi
γi,jyj = tT

Where for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}
1 Variables: Xi , Yj and yj .

2 Constants: Aj , Bi , tT , γi ,j and bi .
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Groth-Sahai Proof Systems
A NIWI/NIZK proof system (Setup,Prove,Verify):

Multi-exponentiation equation.

Operate in two modes: Depending on the Common Reference String
CRS = (u1,u2, û1, û2) ∈ G2 ×G2 × Ĝ2 × Ĝ2.

I Perfect Zero-Knowledge (ZK) setting ∃ζ, ζ̂ ∈ Zp s.t. u2 = uζ
1 and

û2 = û ζ̂
1 .

1 Using ζ, ζ̂, we can simulate a proof for false statement.

2 Proofs using different valid witnesses are indistinguishable.

I Perfect Soundness setting (u1,u2) and (û1, û2) are independent.

1 Even unbounded adversaries cannot prove false statements.

2 Trapdoor allows extracting witnesses from proofs.
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Strictly Structure-Preserving Commitment [AKOT15]

SSPC (Setup,Commit,Verify):

Properties

Correctness: Verify(ck,m,Commit(ck,m; open), open) = True.

Strictly Structure-Preserving: Commitment is also in G or Ĝ.

Remark: Binding impossible [AHO12], but weaker property suffices.

Chosen-Message Target Collision Resistant (CM-TCR): Given
com∗,m∗, open∗, hard to generate m s.t.

Verify(ck,m, com∗, open∗) = True ∧m 6= m∗
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Construction ideas: Cramer-Shoup [CS02]

IND-CCA encryption: Cramer-Shoup

Keys: PK = g1, g2,X = g x1
1 · g

x2
2 , SK = x1, x2.

Ciphertext: C = (C0,C1,C2, π) = (M · X r , g r
1 , g

r
2 , π) where π is a

proof of logg1(C1) = logg2(C2) and r
R← Zq.

Decryption: M = C0/(C x1
1 C x2

2 ).

Proof intuitions

Setup: PPGS in perfect soundness setting.

Challenge Ciphertext:

C = (C0,C1,C2, π) = (Mb · X r , g r
1 , g

r
2 , π).
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Construction ideas: All-but-one perfectly sound hash proof
system [LY12]

ABO proof

Each proof is associated with a tag, prove with u1 = u2 · (1, 1
tag ).

Correct tag GS proof is in perfect soundness setting

Wrong tag GS proof is in perfect ZK setting

Prove logg1(C1) = logg2(C2)

Generate OTS keys VKOTS ,SKOTS .

Generate proof of logg1(C1) = logg2(C2) with tag = VKOTS .

18 / 22



Difficulties

Problems
1 OTS .VK has several group elements.

I Hash verification key OTS .VK. (No for the structure-preserving)
I Strictly structure-perserving commitment.

(Binding impossible [AHO12])
I Solution: Enhanced Chosen-Message Target Collision Resistant

(ECM-TCR) suffices.

2 Commitement scheme’s ck and com are in G and Ĝ.
I Solution: No need to sign the commitment. (Not trivial to prove)
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I Solution: No need to sign the commitment. (Not trivial to prove)

19 / 22



Difficulties

Problems
1 OTS .VK has several group elements.

I Hash verification key OTS .VK. (No for the structure-preserving)
I Strictly structure-perserving commitment.

(Binding impossible [AHO12])
I Solution: Enhanced Chosen-Message Target Collision Resistant

(ECM-TCR) suffices.

2 Commitement scheme’s ck and com are in G and Ĝ.
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Structure-Preserving Publicly Verifiable Encryption

SK = (x1, x2).

PK = (g1, g2,X = g x1
1 g x2

2 ,PPSPC , ck,CRSGS = (û1, û2) ∈ Ĝ2 × Ĝ2).

where (g1, g2) ∈ G2, (x1, x2) ∈ Z2
p and ∃ρu ∈ Zp such that û1 = ûρu2 .

Details of the Encryption algorithm

Generate C = (C0,C1,C2) = (M · X θ, gθ1 , g
θ
2 ).

OTS.KeyGen(PP)→ (SSK, SVK).

Commit(ck, SVK)→ ( ˆcom, open).

Compute û ˆcom = û2 · (1, ˆcom) ∈ Ĝ2.

Prove(CRS ˆcom = (û1, ûcom), (C1,C2), θ)→ π of statement

∃χ s.t. (C1,C2) = (gχ1 , g
χ
2 ).

OTS.Sign(SSK, (C , π))→ σ.
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Encryption

Generate C ∗ = (C ∗0 ,C
∗
1 ,C

∗
2 ) = (Mb · X θ∗ , gθ

∗
1 , gθ

∗
2 ).

OTS.KeyGen(PP)→ (SSK∗,SVK∗). Done at beginning

Commit(ck, SVK∗)→ ( ˆcom∗, open∗). Done at beginning
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Encryption

Generate C ∗ = (C ∗0 ,C
∗
1 ,C

∗
2 ) = (Mb · X θ∗ , gθ

∗
1 , gθ

∗
2 ).
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Prove(CRS ˆcom = (û1, û ˆcom), x = (C ∗1 ,C
∗
2 ),w = θ∗)→ π∗ of

the statement ”∃χ such that (C ∗1 ,C
∗
2 ) = (gχ1 , g

χ
2 )”.

OTS.Sign(SSK∗, (C ∗, π∗))→ σ∗. (No need to sign commitments)

Output the ciphertext (C ∗, π∗, SVK∗, ˆcom∗, open∗, σ∗) ∈ G16 × Ĝ11.
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Compute û ˆcom = û2 · (1, ˆcom∗) ∈ Ĝ2.
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Encryption

Generate C ∗ = (C ∗0 ,C
∗
1 ,C

∗
2 ) = (Mb · C x1

1 · C
x2
2 , g

θ1
1 , g

θ2
2 ).
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Conclusion

Publicly verifiable IND-CCA encryption: 321G→ 16G + 11Ĝ.

Publicly verifiable RCCA rerandomizable encryption:
93G/49G + 20Ĝ→ 29G + 20Ĝ.

Future Works

Smaller ciphertext for rerandomization encryption scheme.

More general malleability
(e.g. Linear Homomorphism, HCCA security)?
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