The point decomposition problem in Jacobian varieties J

Jean-Charles Faugére?, Alexandre Wallet!?

1ENS Lyon, Laboratoire LIP, Equipe AriC

2UPMC Univ Paris 96, CNRS, INRIA, LIP6, Equipe PolSys

=a= e |ip

1/19



@ Generalities

@ Discrete Logarithm Problem
@ Short State-of-the-Art for curves
@ About Index-Calculus
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Discrete Logarithm Problem (DLP)

Let g,h = [x]- g € (G, +), with x € Z. Compute x.
Is this a hard problem ?

Classic Quantum

@ Generic group: yes

@ For some groups: no “NO”

o Cryptography: “yes”

Security basis for Diffie-Hellman, El-Gamal, Digital Signatures,...

Today's groups:

Elliptic curves E(F,)
Jacobian of algebraic curves Jr (C)
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Computing Discrete Logs

exp. time ———————————— DLP ON CURVES =========——=——mm -
. : genus
Generic alg. g. iField Index Calculus
"Small genus"
lower bound: Q(q%> Decomposition
' g > 2 _p n
q=q9
2 2
Baby-steps - 2— = 2=
Giant-steps O(q%) O(q g ) O(q. " )
p-Pollard [G'00], [D'07] | |[G'09,D'11],[N'10]
[GTTD'07] [GTTD'07]
subexp. time
"Large genus" "Large degree"
Lgo(1/2)  Lg(1/3)
[ADH'99], [EGS'02] [EGTT'13]

poly. time
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Situation for elliptic curves

For cryptography: mostly elliptic curves (g = 1)

Elliptic curves

PN

over prime over extension
fields fields
CETEE Decomposition ¢ ———— Transfer
only attacks attacks
/
/s \
¥ X
Higher genus Finite field

5/ 19



About Index-Calculus

Inputs
G, H=[x]G

l

Harvesting

Linear
Algebra

l

Discrete
Logarithm
[x]

C : algebraiccurve @G € J(C) : Jacobian variety of C

1) Select Factor base

F={F,....Fy} CJ(C)

2) Find N relations:

[G]G+ [b]H: [Cil]Fl +ee +[CiN]FN

T

sparse

Cz.j matrix

1) Compute v % O s.t.
Cij v =0

2) Use U to retrieve [x]

N too small: N too big:
harvesting trade-off linear algebra
too |
too hard [GTTD'07] 00 long

+ easy to enumerate

+ elements should be "small"

Several techniques
Today: C over Fyn
done by solving polynomial systems

(aka: Decomposition attacks)

Complexity
linalg ~O(N?)  well-known

harvest. ~ [V x Find 1 relation
—_—
What about this ?
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Today'’s target: harvesting in Index-Calculus for curves over Fgn.

Motivations:
Algorithmic Computational Cryptography
Number Theory Algebraic Geometry

Compute discrete logs in abelian varieties.

.. Transfer attacks !
How efficient can we be ?
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@ Harvesting and Decomposition attacks
@ What is a relation ?
@ How to find a relation ?
o Complexity and Polynomial System Solving
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Algebraic curves, Jacobian varieties, group law

C: P(x,y) =0, for some P € F,[X, Y], algebraic curve of genus g.

g = 1: elliptic: y> =x>+ Ax+ B,A,B€F, O

g = 2: hyperelliptic: y2 + hi(x)y = x5+ ...

hi € Fg[x],deghy <2 OQ

g > 3: hyperelliptic: y2 + hy(x)y = x2&+1 4 .
hi € Fg[x],degh < g

0
Non-hyperelliptic (all the rest). ?é

0
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Algebraic curves, Jacobian varieties, group law
C: P(x,y) =0, for some P € F,[X, Y], algebraic curve of genus g.

Fix a point O. J(C): Jacobian variety
In practice, a reduced divisor is

J(C) is a quotient group. k
(©) D=3 P —kO.
Its elements are “reduced divisors”. for some Py :':.1. PcC k<g

Ex: g =1, E elliptic, point at infinity O

Line through P1, P> : f(x,y) =0.
In J(E): P1+ P2+P3—30 =0,
so that (P1 — O) 4 (P2 — O) = ([-P3] — O).
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Algebraic curves, Jacobian varieties, group law

C: P(x,y) =0, for some P € F,[X, Y], algebraic curve of genus g.
Fix a point O. J(C): Jacobian variety

In practice, a reduced divisor is
K
D=3 P — kO.
i=1
for some Py,...,PreC k<g

J(C) is a quotient group.

Its elements are “reduced divisors”.

Ex: g = 2, H hyperelliptic, point at infinity O

Cubic through Py,...,Ps: f(x,y) =0
In J(H): Pr+- - +Ps— 60 =0

(P1+ P2 —20) + (P3+ Ps—20)
Dy + D>

so that:

= [—Ps] + [ Ps] — 20
D3
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Geometry of relations

Point m-Decomposition Problem (PDP,,)
Let H be a curve of genus g, R € J(H) and F C J(H).

Find, if possible, D1,...,Dp, € Fst. R=D;+---+ D,,.

Harvesting = solving multiple PDP,, instances, for some fixed m.
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Geometry of relations

Point m-Decomposition Problem (PDP,,)
Let M be a curve of genus g, R € J(H) and F C J(H).

Find, if possible, D1,...,Dp, € Fst. R=D;+---+ D,,.

Harvesting = solving multiple PDP,, instances, for some fixed m.

Let R = Zi (XR,-ayR,-) —-g0¢ J(H)
R =73 (xp;, ¥p;) — mgO < If(x,y) st
f(XR,'7yR,') = f(XDU’.yDiJ') =0.

Such f's form a linear space of finite dim:

d
f € Span(fi,...,fqg) = f =3 aif;
i=1

Goal: find (a;)i<q-
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Let M be a curve of genus g, R € J(H) and F C J(H).

Find, if possible, D1,...,Dp, € Fst. R=D;+---+ D,,.

Harvesting = solving multiple PDP,, instances, for some fixed m.

Let R =3 (xr,,Yr,) — 80 € T(H). Ex: g=2and m=2
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Such f's form a linear space of finite dim:

d
f €Span(fi,...,fq) = f =3 aif; Ry
i=1

Goal: find (a;)i<q-

10 / 19



Geometry of relations

Point m-Decomposition Problem (PDP,,)
Let M be a curve of genus g, R € J(H) and F C J(H).

Find, if possible, D1,...,Dp, € Fst. R=D;+---+ D,,.

Harvesting = solving multiple PDP,, instances, for some fixed m.

Let R =3, (xg;, vr,) — 80 € T(H). Ex: g=2and m=2
D; = Di1 + Dj» — 20.
R =73 (xp;, ¥p;) — mgO < If(x,y) st

f(xr;, yr;,) = f(xp;, yp;) = 0. Dy Dz

Such f's form a linear space of finite dim:
d
fESpan(fl,.‘.,fd):> f= Za;f[ D11 R2

i=1

Goal: find (a;)i<q-
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Solving PDP,, [G'09], [N'10], [D'11]

Goal: Find (a;)i<4 "in a smart way”

Assume base field is Fq» = Spang (1,t,.. ., t" 1)



Solving PDP,,, [G'09], [N'10], [D'11]

Goal: Find (a;)i<4 "in a smart way”

Assume base field is Fq» = Spang (1,t,... 1)

Restriction of scalars

Write x = ijjtf, xj € Fg, X = (X1,...,Xn):
(xy)eH & (X,7) W

where WW: Weil Restriction of H over Fy

Factor base:

F={P—-0 : PeH, x(P)eFq}
=Wn{x =0}>0
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Solving PDP,,, [G'09], [N'10], [D'11]

Goal: Find (a;)i<4 "in a smart way”

Assume base field is Fq» = Spang (1,t,... 1)

Restriction of scalars Decomposition Polynomial DPg

. o _ m—1 3
Write x = Y38, 3 € Fq, 8 = (x1,---xn):  DPg(x) = 206 m 5 (o))
[T(x = x&;) i=0
(y)EH e (%,7)eW If f describes R = 3", ; (xjj, y;j) — mO:
where WW: Weil Restriction of #H over [y DPgr(x;j) =0, Vi<mVj<n-1
Factor base: Write Ni((ai)) = X250 N;((3)Y:
F={P-0 : PeH, x(P)eFq} D1,...,Dm € F = DPgr(x) € Fq[x]
=Wn{x=0}>o & Ny((3)) =0,Vi,Vj>0
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Solving PDP,,, [G'09], [N'10], [D'11]

Goal: Find (a;)i<4 "in a smart way”

Assume base field is Fq» = Spang (1,t,... 1)

Restriction of scalars Decomposition Polynomial DPg

. o _ m—1 3
Write x = Y38, 3 € Fq, 8 = (x1,---xn):  DPg(x) = 206 m 5 (o))
[T(x = x&;) i=0
(y)EH e (%,7)eW If f describes R = 3", ; (xjj, y;j) — mO:
where WW: Weil Restriction of #H over [y DPr(xj)=0,Vi<mVj<n-1
Factor base: Write Ni((ai)) = X250 N;((3)Y:
F={P-0 : PeM, x(P)eFq} D1,...,Dm € F = DPgr(x) € Fq[x]
=Wn{x=0}>o & Ny((3)) =0,Vi,Vj>0

Finding relations ~ solving Polynomial systems.

For m = ng, {N;j(3i) = 0}i<m,j>o0 is generally 0-dimensional.
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Solving 0-dimensional systems with Grobner Bases tools

DRL Basis —
F4, F5

Original —
System

Change order
FGLM

A: degree of regularity D: #solutions

n variables

O(s("2)) O(nD*)

s equations

w: lin. alg. exponent

—  Univariate
Solving
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Solving 0-dimensional systems with Grobner Bases tools

Original — DRL Basis —  Change order —  Univariate
System F4, F5 FGLM Solving
A: degree of regularity D: #solutions
n variables
n+A\Y¥ w
s equations O(S( 2 ) ) O(nD )
In ~ 1 relation
PDP,, setting A = o(Dl/n) D = on(n—1)g
Fgn, genus g costs ;
O((ng)!D*)

+ Proba that all roots of DPg in Fq ~ 1/(ng)!

D is the main complexity parameter.
Can we reduce it 7
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Situation

Known reductions:
[FGHR'14], [FHJRV'14], [GG'14] only for g = 1 (elliptic curves).
Uses Summation polynomials and

symmetries (invariant theory)

Higher genus: Ex: g =2,n=3,logqg =15
No reduction known before Find 1 relation ~ 12 days.

Contributions!:
@ Reduction of D for hyperelliptic curves of all genus, if q = 2".
@ Practical harvesting on a meaningul curve (#J(H) ~ 184 bits prime).

1).C. Faugére, AW., The Point Decomposition Problem in Hyperelliptic Curves. Designs,
Codes and Cryptography [In revision]
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© Degree reduction and practical computations
@ Structure of DPg
@ Degree reduction
@ Impact, comparisons
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Structure of DPg in even characteristic, part 1

H : y? + hi(x)y = ho(x) hyperelliptic of genus g over Fou, fix R € J(H).

m—1
DPr(x) =x"+ Y Ni(a)x' & Vi, degN(a)=2.
i=0

With Fow = SpanFZk (tj)jgnfl, N,-(a) = Zj N,'J'(E_l)tj.

Reminder: solving PDP,,, = solving {Nj(a) = 0}s0,i<ng over Fa«.
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Structure of DPg in even characteristic, part 1

H : y? + hi(x)y = ho(x) hyperelliptic of genus g over Fou, fix R € J(H).

m—1
DPr(x) =x"+ Y Ni(a)x' & Vi, degN(a)=2.
i=0

With For = SpanFZk (tj)jgn_l, N,-(a) = Zj N,'J'(E_l)tj.

Reminder: solving PDP,,, = solving {Nj(a) = 0}s0,i<ng over Fa«.

N;(a) square = Vj, Njj(a) squares = replace quadratic eqs by linear eqs

Proposition: Number of squares

Let hi(x) = Y5, ;x', and let L =s —t + 1 be the length of h;(x).
There are exactly g — L — 1 squares among the N;(a).

Consequence: (n —1)(g — L — 1) replacements in {N;;(a) = 0}j>0,i<ng-
Find n — 1 more if as € Fox.
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Structure of DPg in even characteristic, part 2

In H : y2 + hi(x)y = ho(x), we usually have h1(x) monic.

Proposition: N,,_; is univariate

Let a = (a1,...,aq4). Then Np_1(aq) = ag® + aq + ) for some \ € Fo.

Rewrite: Npp_1(ag) = a3+ ad.0 + Ao + 2_joq ag,;t7 + 22501 (aaj + MY

= Nm-1,0(8d) + > j>1 Nm-1,(ad,1- - - agn-1)t.

Proposition: “presolving’”

{Nm-1j(ad.1,--.,adn-1)}j>1 is O-dimensional and has a solution in Fy« whp.

Consequence: determines n — 1 vars in the full system, removes n — 1 egs.
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Analysis of degree reduction

Base field Fow, m = ng. Implies d = (n — 1)g. Let L be the length of h;.

Genericity assumption:
PDP,, systems behave like regular systems of dimension 0.

Before reduction: After reduction:
e #a=n(n—1)g @ n— 1 determined vars
o #eqs = n(n—1)g o (n—1)(g—L—1) linear egs
@ Egs have deg =2 @ remaining have deg = 2
= dyy = 2"(n—1g = dpey = 200~ D((n-1)g+L-2)

2(n—1)((n—1)g—1)

IA

hew < 2(n=1)(ng—1)

factor  2(n-1(e+1) jo/d on—1
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Impact of the reduction

For g =2, n =3, dojg = 212 = 4096, dpe,y = 2° = 64.
e Toy-example for one PDPg instance:

time for dpew ratio
~ 0.029s 75000

time for d,iy

fields tool
~ 1500s

Magma 2.19

Foas | Fa1s

o H with Ly, =1, over Fyo3 = Fos1.3 and #J(H) =2 x 3 x p, with log p = 184.
F£cores tool old this work
8000 C ~ 30 years | ~ 7 days
(optimized®) | unfeasible | practical

e comparison with recent DL over 768 bits finite field:

F#rels

harvesting time | matrix size* | matrix density* | logp
[KDL+'17] | ~ 233 6 months 224 184 768
our work ~ 231 7 days 228 87 184

2F5 with code gen., Sparse-FGLM [FM'11], NTL lib.
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Conclusion

Target: harvesting in Index-Calculus for hyperelliptic curves over Fgn.

Results: Questions:

o degree reduction if g = 2% e What about g odd ?

for hyperelliptics @ What about non-hyperelliptics ?

@ practical, meaningful

. @ Reduction of F's size ?
computations in genus 2

Merci !
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