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Discrete Logarithm Problem (DLP)

Let g , h = [x ] · g ∈ (G ,+), with x ∈ Z. Compute x .

Is this a hard problem ?

Classic

Generic group: yes
For some groups: no
Cryptography: “yes”

Quantum

“NO”

Security basis for Diffie-Hellman, El-Gamal, Digital Signatures,...

Today’s groups:

Elliptic curves E (Fq)

Jacobian of algebraic curves JFq (C)
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Computing Discrete Logs

Index Calculus

exp. time

lower bound: Decomposition

subexp. time

poly. time

Generic alg.
: genus

: #Field

DLP ON CURVES

Baby-steps
Giant-steps

-Pollard

~

"Small genus"

[G'00], [D'07] [G'09,D'11],[N'10]

[ADH'99], [EGS'02]

"Large genus" 

[EGTT'13]

"Large degree"

[GTTD'07] [GTTD'07]
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Situation for elliptic curves

For cryptography: mostly elliptic curves (g = 1)

Elliptic curves

over prime 
fields

over extension 
fields

Generic
only

Decomposition
attacks

Transfer
attacks

Higher genus Finite field
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About Index-Calculus

Linear
Algebra

Harvesting

Discrete
Logarithm

Inputs

1) Compute

2) Use to retrieve

2) Find relations:

sparse
matrix

1) Select Factor base

s.t.

T

: algebraic curve : Jacobian variety of

harvest. ~      x  Find 1 relation

linalg  ~       well-known

What about this ? 

      Complexity

too big:
linear algebra

too long

too small:
harvesting
too hard

 trade-off

 [GTTD'07]

+ easy to enumerate

+ elements should be "small"

Today:     over 

Several techniques

done by solving polynomial systems

(aka: Decomposition attacks)
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Today’s target: harvesting in Index-Calculus for curves over Fqn .

Motivations:

Algorithmic
Number Theory

Computational
Algebraic Geometry

Cryptography

Compute discrete logs in abelian varieties.
How efficient can we be ? Transfer attacks !
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Algebraic curves, Jacobian varieties, group law

C : P(x , y) = 0, for some P ∈ Fq[X ,Y ], algebraic curve of genus g .

g = 1: elliptic: y2 = x3 + Ax + B,A,B ∈ Fq

g = 2: hyperelliptic: y2 + h1(x)y = x5 + . . .

h1 ∈ Fq[x ], deg h1 ≤ 2

g ≥ 3: hyperelliptic: y2 + h1(x)y = x2g+1 + . . .

h1 ∈ Fq[x ], deg h1 ≤ g

Non-hyperelliptic (all the rest).

Fix a point O. J (C): Jacobian variety

J (C) is a quotient group.

Its elements are “reduced divisors”.

In practice, a reduced divisor is

D =
k∑

i=1
Pi − kO.

for some P1, . . . ,Pk ∈ C , k ≤ g

Ex:
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C : P(x , y) = 0, for some P ∈ Fq[X ,Y ], algebraic curve of genus g .

Fix a point O. J (C): Jacobian variety

J (C) is a quotient group.

Its elements are “reduced divisors”.

In practice, a reduced divisor is

D =
k∑

i=1
Pi − kO.

for some P1, . . . ,Pk ∈ C , k ≤ g

Ex: g = 1, E elliptic, point at infinity O

Line through P1,P2 : f (x , y) = 0.

In J (E) : P1 + P2+P3 − 3O = 0,

so that (P1 −O) + (P2 −O) = ([−P3]−O).
P1

P2

P3

−P3
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Algebraic curves, Jacobian varieties, group law

C : P(x , y) = 0, for some P ∈ Fq[X ,Y ], algebraic curve of genus g .

Fix a point O. J (C): Jacobian variety

J (C) is a quotient group.

Its elements are “reduced divisors”.

In practice, a reduced divisor is

D =
k∑

i=1
Pi − kO.

for some P1, . . . ,Pk ∈ C , k ≤ g

Ex: g = 2, H hyperelliptic, point at infinity O

Cubic through P1, . . . ,P4 : f (x , y) = 0

In J (H) : P1+ · · ·+P6 − 6O = 0

so that:
(P1 + P2 − 2O)︸ ︷︷ ︸ + (P3 + P4 − 2O)︸ ︷︷ ︸

D1 + D2

= [−P5] + [−P6]− 2O︸ ︷︷ ︸
D3

P1

P6

P3

P5

P2

P4−P6

−P5
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Geometry of relations

Point m-Decomposition Problem (PDPm)
Let H be a curve of genus g , R ∈ J (H) and F ⊂ J (H).

Find, if possible, D1, . . . ,Dm ∈ F s.t. R = D1 + · · ·+ Dm.

Harvesting = solving multiple PDPm instances, for some fixed m.

Let R =
∑

i (xRi
, yRi

)− gO ∈ J (H).

R =
∑

i,j (xDij
, yDij

)−mgO ⇔ ∃ f (x , y) s.t.:

f (xRi
, yRi

) = f (xDij
, yDij

) = 0.

Such f ’s form a linear space of finite dim:

f ∈ Span(f1, . . . , fd )⇒ f =
d∑

i=1
ai fi

Goal: find (ai )i≤d .

Ex: g = 2 and m = 2
Di = Di1 + Di2 − 2O.
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Geometry of relations

Point m-Decomposition Problem (PDPm)
Let H be a curve of genus g , R ∈ J (H) and F ⊂ J (H).

Find, if possible, D1, . . . ,Dm ∈ F s.t. R = D1 + · · ·+ Dm.

Harvesting = solving multiple PDPm instances, for some fixed m.

Let R =
∑

i (xRi
, yRi

)− gO ∈ J (H).

R =
∑

i,j (xDij
, yDij

)−mgO ⇔ ∃ f (x , y) s.t.:

f (xRi
, yRi

) = f (xDij
, yDij

) = 0.

Such f ’s form a linear space of finite dim:

f ∈ Span(f1, . . . , fd )⇒ f =
d∑

i=1
ai fi

Goal: find (ai )i≤d .

Ex: g = 2 and m = 2
Di = Di1 + Di2 − 2O.

D11

D21

R2

D12

R1

D22
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Solving PDPm [G’09], [N’10], [D’11]

Goal: Find (ai )i≤d “in a smart way”

Assume base field is Fqn = SpanFq
(1, t, . . . , tn−1)

Restriction of scalars

Write x =
∑

j xj t
j , xj ∈ Fq , x̄ = (x1, . . . , xn):

(x , y) ∈ H ⇔ (x̄ , ȳ) ∈ W

where W: Weil Restriction of H over Fq

Factor base:

F = {P −O : P ∈ H, x(P) ∈ Fq}
= W ∩ {xj = 0}j>0

Decomposition Polynomial DPR

DPR(x) =
Resy (H, f )∏

(x − xRi
)

= xm+
m−1∑
i=0

Ni ((ai ))x i

If f describes R =
∑

i,j (xij , yij )−mO:

DPR(xij ) = 0, ∀ i ≤ m, ∀ j ≤ n − 1

Write Ni ((ai )) =
∑

j≥0 Nij ((āi ))tj :

D1, . . . ,Dm ∈ F ⇒ DPR(x) ∈ Fq [x]

⇔ Nij ((āi )) = 0, ∀ i , ∀ j > 0

Finding relations ∼ solving Polynomial systems.

For m = ng, {Nij(āi ) = 0}i≤m,j>0 is generally 0-dimensional.
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Solving 0-dimensional systems with Gröbner Bases tools

Original
System

−→ DRL Basis
F4, F5

−→ Change order
FGLM

−→ Univariate
Solving

n variables
s equations

∆: degree of regularity

O(s
(
n+∆

∆

)ω
)

D: #solutions

O(nDω)

ω: lin. alg. exponent

∆ = Õ(D1/n) D = 2n(n−1)g 1 relation
costs

O((ng)!Dω)

+ Proba that all roots of DPR in Fq ∼ 1/(ng)!

D is the main complexity parameter.
Can we reduce it ?
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Solving

n variables
s equations

∆: degree of regularity

O(s
(
n+∆

∆

)ω
)

D: #solutions

O(nDω)

In
PDPng setting
Fqn , genus g

∆ = Õ(D1/n) D = 2n(n−1)g 1 relation
costs

O((ng)!Dω)

+ Proba that all roots of DPR in Fq ∼ 1/(ng)!

D is the main complexity parameter.
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Situation

Known reductions:
[FGHR’14], [FHJRV’14], [GG’14]
Uses Summation polynomials and
symmetries (invariant theory)

only for g = 1 (elliptic curves).

Higher genus:
No reduction known before

Ex: g = 2, n = 3, log q = 15
Find 1 relation ∼ 12 days.

Contributions1:
Reduction of D for hyperelliptic curves of all genus, if q = 2n.
Practical harvesting on a meaningul curve (#J (H) ∼ 184 bits prime).

1J-C. Faugère, A.W., The Point Decomposition Problem in Hyperelliptic Curves. Designs,
Codes and Cryptography [In revision]
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Structure of DPR in even characteristic, part 1

H : y2 + h1(x)y = h0(x) hyperelliptic of genus g over F2kn , fix R ∈ J (H).

DPR(x) = xm +
m−1∑
i=0

Ni (a)x i & ∀ i , degNi (a) = 2.

With F2kn = SpanF2k
(tj)j≤n−1, Ni (a) =

∑
j Nij(ā)tj .

Reminder: solving PDPng = solving {Nij(ā) = 0}j>0,i≤ng over F2k .

Ni (a) square ⇒ ∀ j ,Nij(ā) squares ⇒ replace quadratic eqs by linear eqs

Proposition: Number of squares
Let h1(x) =

∑s
i=t αix

i , and let L = s− t + 1 be the length of h1(x).
There are exactly g − L− 1 squares among the Ni (a).

Consequence: (n− 1)(g − L− 1) replacements in {Nij(ā) = 0}j>0,i≤ng .
Find n− 1 more if αs ∈ F2k .
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Structure of DPR in even characteristic, part 2

In H : y2 + h1(x)y = h0(x), we usually have h1(x) monic.

Proposition: Nm−1 is univariate
Let a = (a1, . . . , ad). Then Nm−1(ad) = ad

2 + ad + λ for some λ ∈ F2kn .

Rewrite: Nm−1(ad) = a2
d,0 + ad,0 + λ0 +

∑
j≥1 a

2
d,jt

2j +
∑

j≥1(ad,j + λj)tj

= Nm−1,0(ād) +
∑

j≥1 Nm−1,j(ad,1, . . . , ad,n−1)tj .

Proposition: “presolving”
{Nm−1,j(ad,1, . . . , ad,n−1)}j≥1 is 0-dimensional and has a solution in F2k whp.

Consequence: determines n− 1 vars in the full system, removes n− 1 eqs.
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Analysis of degree reduction

Base field F2kn ,m = ng . Implies d = (n − 1)g . Let L be the length of h1.

Genericity assumption:
PDPng systems behave like regular systems of dimension 0.

Before reduction:
#ā = n(n − 1)g

#eqs = n(n − 1)g

Eqs have deg = 2
⇒ dold = 2n(n−1)g

After reduction:
n − 1 determined vars
(n− 1)(g −L− 1) linear eqs
remaining have deg = 2

⇒ dnew = 2(n−1)((n−1)g+L−2)

2(n−1)((n−1)g−1) ≤ dnew ≤ 2(n−1)(ng−1)

factor 2(n−1)(g+1) dold
dnew

2n−1
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Impact of the reduction

For g = 2, n = 3, dold = 212 = 4096, dnew = 26 = 64.

• Toy-example for one PDP6 instance:

fields tool time for dold time for dnew ratio
F245 |F215 Magma 2.19 ∼ 1500s ∼ 0.029s 75000

• H with Lh1 = 1, over F293 = F231·3 and #J (H) = 2× 3× p, with log p = 184.

#cores tool old this work

8000 C ∼ 30 years ∼ 7 days
(optimized2) unfeasible practical

• comparison with recent DL over 768 bits finite field:

#rels harvesting time matrix size∗ matrix density∗ log p #linalg.
[KDL+’17] ∼ 233 6 months 224 184 768 ∼ 256

our work ∼ 231 7 days 228 87 184 ∼ 263

2F5 with code gen., Sparse-FGLM [FM’11], NTL lib.
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Conclusion

Target: harvesting in Index-Calculus for hyperelliptic curves over Fqn .

Results:

degree reduction if q = 2k

for hyperelliptics
practical, meaningful
computations in genus 2

Questions:

What about q odd ?
What about non-hyperelliptics ?
Reduction of F ’s size ?

Merci !
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