The point decomposition problem in Jacobian varieties

Jean-Charles Faugère², Alexandre Wallet^{1,2}

¹ENS Lyon, Laboratoire LIP, Equipe AriC

²UPMC Univ Paris 96, CNRS, INRIA, LIP6, Equipe PolSys

Generalities

- Discrete Logarithm Problem
- Short State-of-the-Art for curves
- About Index-Calculus

2 Harvesting and Decomposition attacks

3 Degree reduction and practical computations

4 Conclusion

Discrete Logarithm Problem (DLP)

Let
$$g, h = [x] \cdot g \in (G, +)$$
, with $x \in \mathbb{Z}$. Compute x .

Is this a hard problem ?

Security basis for Diffie-Hellman, El-Gamal, Digital Signatures,...

Today's groups: **Elliptic curves** $E(\mathbb{F}_q)$ **Jacobian of algebraic curves** $\mathcal{J}_{\mathbb{F}_q}(\mathcal{C})$

Computing Discrete Logs

Situation for elliptic curves

For cryptography: mostly elliptic curves (g = 1)

About Index-Calculus

 \mathcal{C} : algebraic curve $G \in \mathcal{J}(\mathcal{C})$: Jacobian variety of \mathcal{C}

Today's target: harvesting in Index-Calculus for curves over \mathbb{F}_{q^n} .

Motivations:

Algorithmic Number Theory Computational Algebraic Geometry

Cryptography

Compute discrete logs in abelian varieties. How efficient can we be ?

Transfer attacks !

Generalities

2 Harvesting and Decomposition attacks

- What is a relation ?
- How to find a relation ?
- Complexity and Polynomial System Solving

Degree reduction and practical computations

4 Conclusion

Algebraic curves, Jacobian varieties, group law

 $\mathcal{C}: P(x, y) = 0$, for some $P \in \mathbb{F}_q[X, Y]$, algebraic curve of **genus** g.

$$g=1$$
: elliptic: $y^2=x^3+Ax+B, A, B\in \mathbb{F}_q$

$$g = 2$$
: hyperelliptic: $y^2 + h_1(x)y = x^5 + \dots$
 $h_1 \in \mathbb{F}_q[x], \deg h_1 \leq 2$

$$g\geq 3$$
: hyperelliptic: $y^2+h_1(x)y=x^{2g+1}+\ldots$
 $h_1\in \mathbb{F}_q[x], \deg h_1\leq g$

Non-hyperelliptic (all the rest).

Algebraic curves, Jacobian varieties, group law

C: P(x, y) = 0, for some $P \in \mathbb{F}_q[X, Y]$, algebraic curve of **genus** g.

Fix a point \mathcal{O} . $\mathcal{J}(\mathcal{C})$: Jacobian variety

 $\mathcal{J}(\mathcal{C})$ is a quotient group.

Its elements are "reduced divisors".

Ex: g = 1, E elliptic, point at infinity O

Line through $P_1, P_2 : f(x, y) = 0$. In $\mathcal{J}(E) : P_1 + P_2 + P_3 - 3\mathcal{O} = 0$, so that $(P_1 - \mathcal{O}) + (P_2 - \mathcal{O}) = ([-P_3] - \mathcal{O})$. In practice, a reduced divisor is $D = \sum_{i=1}^{k} P_i - k\mathcal{O}.$ for some $P_1, \dots, P_k \in \mathcal{C}$, $\mathbf{k} \leq \mathbf{g}$

Algebraic curves, Jacobian varieties, group law

C: P(x, y) = 0, for some $P \in \mathbb{F}_q[X, Y]$, algebraic curve of **genus** g.

Fix a point \mathcal{O} . $\mathcal{J}(\mathcal{C})$: Jacobian variety

 $\mathcal{J}(\mathcal{C})$ is a quotient group.

Its elements are "reduced divisors".

Ex: g = 2, \mathcal{H} hyperelliptic, point at infinity \mathcal{O}

Cubic through $P_1, \dots, P_4 : f(x, y) = 0$ In $\mathcal{J}(\mathcal{H}) : P_1 + \dots + P_6 - 6\mathcal{O} = 0$ $(P_1 + P_2 - 2\mathcal{O}) + (P_3 + P_4)$

so that:

$$\underbrace{(P_1 + P_2 - 2O)}_{D_1} + \underbrace{(P_3 + P_4 - 2O)}_{P_2} + \underbrace{(P_3 + P_4 - 2O)}_{D_2}$$

$$= \underbrace{[-P_5] + [-P_6] - 2O}_{D_3}$$

In practice, a reduced divisor is $D = \sum_{i=1}^{k} P_i - k\mathcal{O}.$ for some $P_1, \dots, P_k \in \mathcal{C}$, $\mathbf{k} \leq \mathbf{g}$

Point *m*-Decomposition Problem (PDP_m)

Let \mathcal{H} be a curve of genus g, $R \in \mathcal{J}(\mathcal{H})$ and $\mathcal{F} \subset \mathcal{J}(\mathcal{H})$.

Find, if possible, $D_1, \ldots, D_m \in \mathcal{F}$ s.t. $R = D_1 + \cdots + D_m$.

Harvesting = solving multiple PDP_m instances, for some fixed m.

Point *m*-Decomposition Problem (PDP_m)

Let \mathcal{H} be a curve of genus g, $R \in \mathcal{J}(\mathcal{H})$ and $\mathcal{F} \subset \mathcal{J}(\mathcal{H})$.

Find, if possible, $D_1, \ldots, D_m \in \mathcal{F}$ s.t. $R = D_1 + \cdots + D_m$.

Harvesting = solving multiple PDP_m instances, for some fixed m.

Let $R = \sum_{i} (x_{R_i}, y_{R_i}) - g\mathcal{O} \in \mathcal{J}(\mathcal{H}).$ $R = \sum_{i,j} (x_{D_{ij}}, y_{D_{ij}}) - mg\mathcal{O} \Leftrightarrow \exists f(x, y) \text{ s.t.}:$ $f(x_{R_i}, y_{R_i}) = f(x_{D_{ij}}, y_{D_{ij}}) = 0.$

Such f's form a linear space of finite dim: $f \in \text{Span}(f_1, \dots, f_d) \Rightarrow f = \sum_{i=1}^d a_i f_i$

Goal: find $(a_i)_{i \leq d}$.

Point *m*-Decomposition Problem (PDP_m)

Let \mathcal{H} be a curve of genus g, $R \in \mathcal{J}(\mathcal{H})$ and $\mathcal{F} \subset \mathcal{J}(\mathcal{H})$.

Find, if possible, $D_1, \ldots, D_m \in \mathcal{F}$ s.t. $R = D_1 + \cdots + D_m$.

Harvesting = solving multiple PDP_m instances, for some fixed m.

Let
$$R = \sum_{i} (x_{R_i}, y_{R_i}) - g\mathcal{O} \in \mathcal{J}(\mathcal{H}).$$

 $R = \sum_{i,j} (x_{D_{ij}}, y_{D_{ij}}) - mg\mathcal{O} \Leftrightarrow \exists f(x, y) \text{ s.t.}:$
 $f(x_{R_i}, y_{R_i}) = f(x_{D_{ij}}, y_{D_{ij}}) = 0.$

Such *f*'s form a **linear space of finite dim:** $f \in \text{Span}(f_1, \dots, f_d) \Rightarrow f = \sum_{i=1}^d a_i f_i$

Goal: find $(a_i)_{i \leq d}$.

Ex:
$$g = 2$$
 and $m = 2$
 $D_i = D_{i1} + D_{i2} - 2\mathcal{O}$.

Point *m*-Decomposition Problem (PDP_m)

Let \mathcal{H} be a curve of genus g, $R \in \mathcal{J}(\mathcal{H})$ and $\mathcal{F} \subset \mathcal{J}(\mathcal{H})$.

Find, if possible, $D_1, \ldots, D_m \in \mathcal{F}$ s.t. $R = D_1 + \cdots + D_m$.

Harvesting = solving multiple PDP_m instances, for some fixed m.

Let
$$R = \sum_{i} (x_{R_i}, y_{R_i}) - g\mathcal{O} \in \mathcal{J}(\mathcal{H}).$$

 $R = \sum_{i,j} (x_{D_{ij}}, y_{D_{ij}}) - mg\mathcal{O} \Leftrightarrow \exists f(x, y) \text{ s.t.}:$
 $f(x_{R_i}, y_{R_i}) = f(x_{D_{ij}}, y_{D_{ij}}) = 0.$

Such f's form a linear space of finite dim: $f \in \text{Span}(f_1, \dots, f_d) \Rightarrow f = \sum_{i=1}^d a_i f_i$

Goal: find $(a_i)_{i \leq d}$.

Goal: Find $(a_i)_{i \leq d}$ "in a smart way" Assume base field is $\mathbb{F}_{q^n} = \text{Span}_{\mathbb{F}_q}(1, \mathbf{t}, \dots, \mathbf{t}^{n-1})$

Goal: Find $(a_i)_{i \leq d}$ "in a smart way"

Assume base field is $\mathbb{F}_{q^n} = \operatorname{Span}_{\mathbb{F}_q}(1, \mathbf{t}, \dots, \mathbf{t^{n-1}})$

Restriction of scalars

Write
$$\mathbf{x} = \sum_j x_j \mathbf{t}^j$$
, $x_j \in \mathbb{F}_q$, $\bar{\mathbf{x}} = (x_1, \dots, x_n)$:

 $(x, y) \in \mathcal{H} \Leftrightarrow (\bar{x}, \bar{y}) \in \mathcal{W}$

where \mathcal{W} : Weil Restriction of \mathcal{H} over \mathbb{F}_q

Factor base:

$$\mathcal{F} = \{P - \mathcal{O} : P \in \mathcal{H}, x(P) \in \mathbb{F}_q\}$$
$$= \mathcal{W} \cap \{x_j = 0\}_{j > 0}$$

Goal: Find $(a_i)_{i \leq d}$ "in a smart way"

Assume base field is $\mathbb{F}_{q^n} = \operatorname{Span}_{\mathbb{F}_q}(1, \mathbf{t}, \dots, \mathbf{t^{n-1}})$

Restriction of scalars

Write
$$\mathbf{x} = \sum_j x_j \mathbf{t}^j$$
, $x_j \in \mathbb{F}_q$, $\bar{\mathbf{x}} = (x_1, \dots, x_n)$:

 $(x, y) \in \mathcal{H} \Leftrightarrow (\bar{x}, \bar{y}) \in \mathcal{W}$

where \mathcal{W} : Weil Restriction of \mathcal{H} over \mathbb{F}_q

Factor base:

$$\mathcal{F} = \{P - \mathcal{O} : P \in \mathcal{H}, x(P) \in \mathbb{F}_q\}$$
$$= \mathcal{W} \cap \{x_j = 0\}_{j > 0}$$

Decomposition Polynomial DP_R

$$DP_{R}(x) = \frac{\operatorname{Res}_{Y}(\mathcal{H}, f)}{\prod(x - x_{R_{i}})} = x^{m} + \sum_{i=0}^{m-1} N_{i}((a_{i}))x^{i}$$

If f describes
$$R = \sum_{i,j} (x_{ij}, y_{ij}) - m\mathcal{O}$$
:
 $DP_R(x_{ij}) = 0, \ \forall i \le m, \forall j \le n-1$

Write $N_i((a_i)) = \sum_{j \ge 0} N_{ij}((\bar{a}_i))\mathbf{t}^j$: $D_1, \dots, D_m \in \mathcal{F} \Rightarrow DP_R(x) \in \mathbb{F}_q[x]$ $\Leftrightarrow N_{ij}((\bar{a}_i)) = 0, \forall i, \forall j > 0$

Goal: Find $(a_i)_{i \leq d}$ "in a smart way"

Assume base field is $\mathbb{F}_{q^n} = \operatorname{Span}_{\mathbb{F}_q}(1, \mathbf{t}, \dots, \mathbf{t^{n-1}})$

Restriction of scalars	Decomposition Polynomial DP _R		
Write $\mathbf{x} = \sum_j x_j \mathbf{t}^j$, $x_j \in \mathbb{F}_q$, $\bar{\mathbf{x}} = (x_1, \dots, x_n)$:	$DP_{R}(x) = \frac{\operatorname{Res}_{y}(\mathcal{H}, f)}{\prod(x - x_{R_{i}})} = x^{m} + \sum_{i=0}^{m-1} N_{i}((a_{i}))x^{i}$		
$(x,y) \in \mathcal{H} \Leftrightarrow (\bar{x},\bar{y}) \in \mathcal{W}$	If f describes $R = \sum_{i,j} (x_{ij}, y_{ij}) - m\mathcal{O}$:		
where $\mathcal{W}:$ Weil Restriction of $\mathcal H$ over $\mathbb F_q$	$DP_{R}(x_{ij}) = 0, \ \forall i \leq m, \forall j \leq n-1$		
Factor base:	Write $N_i((a_i)) = \sum_{j \ge 0} N_{ij}((\bar{a}_i))\mathbf{t}^j$:		
$\mathcal{F} = \{ \mathcal{P} - \mathcal{O} \ : \ \mathcal{P} \in \mathcal{H}, \ x(\mathcal{P}) \in \mathbb{F}_q \}$	$D_1,\ldots,D_m\in\mathcal{F}\Rightarrow DP_R(x)\in\mathbb{F}_q[x]$		
$= \mathcal{W} \cap \{\mathbf{x}_j = 0\}_{j > 0}$	$\Leftrightarrow N_{ii}((\bar{a}_i)) = 0, \forall i, \forall i > 0$		

Finding relations \sim solving Polynomial systems.

For $\mathbf{m} = \mathbf{ng}$, $\{N_{ij}(\bar{\mathbf{a}}_i) = 0\}_{i \le m, j > 0}$ is generally 0-dimensional.

Solving 0-dimensional systems with Gröbner Bases tools

 ω : lin. alg. exponent

Solving 0-dimensional systems with Gröbner Bases tools

Original System	\longrightarrow	DRL Basis F4, F5	\longrightarrow	Change order FGLM	\longrightarrow	Univariate Solving
		∆: degree of regulari	ty	D: #solutions		
<i>n</i> variables <i>s</i> equations		$O(s\binom{n+\Delta}{\Delta}^{\omega})$		$O(nD^{\omega})$		
In PDP _{ng} settin F _q ", genus	g g	$\Delta = \tilde{O}(D^{1/n})$		$D=2^{n(n-1)g}$	C	1 relation costs $D((ng)!D^{\omega})$

+ Proba that all roots of DP_{R} in $\mathbb{F}_{q} \sim 1/(ng)!$

D is the main complexity parameter. Can we reduce it ?

Situation

Known reductions: [FGHR'14], [FHJRV'14], [GG'14] Uses Summation polynomials and symmetries (invariant theory)

Higher genus: No reduction known before only for g = 1 (elliptic curves).

Ex: $g = 2, n = 3, \log q = 15$ Find 1 relation ~ 12 days.

Contributions¹:

- Reduction of *D* for hyperelliptic curves of all genus, if $q = 2^n$.
- Practical harvesting on a meaningul curve ($\# \mathcal{J}(\mathcal{H}) \sim 184$ bits prime).

¹J-C. Faugère, A.W., *The Point Decomposition Problem in Hyperelliptic Curves*. Designs, Codes and Cryptography [In revision]

Generalities

2 Harvesting and Decomposition attacks

Observe and practical computations

- Structure of DP_R
- Degree reduction
- Impact, comparisons

4 Conclusion

Structure of DP_R in even characteristic, part 1

 $\mathcal{H}: y^2 + h_1(x)y = h_0(x)$ hyperelliptic of genus g over $\mathbb{F}_{2^{kn}}$, fix $R \in \mathcal{J}(\mathcal{H})$.

$$DP_{\mathbf{R}}(x) = x^m + \sum_{i=0}^{m-1} N_i(\mathbf{a}) x^i \quad \& \quad \forall i, \deg N_i(\mathbf{a}) = 2.$$

With $\mathbb{F}_{\mathbf{2}^{kn}} = \operatorname{Span}_{\mathbb{F}_{\mathbf{2}^{k}}}(\mathbf{t}^{j})_{j \leq n-1}, \ N_{i}(\mathbf{a}) = \sum_{j} N_{ij}(\bar{\mathbf{a}})\mathbf{t}^{j}.$

Reminder: solving $PDP_{ng} = solving \{N_{ij}(\bar{\mathbf{a}}) = 0\}_{j>0, i \leq ng}$ over \mathbb{F}_{2^k} .

Structure of DP_R in even characteristic, part 1

 $\mathcal{H}: y^2 + h_1(x)y = h_0(x)$ hyperelliptic of genus g over $\mathbb{F}_{2^{kn}}$, fix $R \in \mathcal{J}(\mathcal{H})$.

$$DP_{\mathbf{R}}(x) = x^m + \sum_{i=0}^{m-1} N_i(\mathbf{a}) x^i \quad \& \quad \forall i, \deg N_i(\mathbf{a}) = 2.$$

With $\mathbb{F}_{2^{kn}} = \operatorname{Span}_{\mathbb{F}_{2^k}}(\mathbf{t}^j)_{j \le n-1}, \ N_i(\mathbf{a}) = \sum_j N_{ij}(\bar{\mathbf{a}})\mathbf{t}^j.$

Reminder: solving $PDP_{ng} = solving \{N_{ij}(\bar{a}) = 0\}_{j>0, i \leq ng}$ over \mathbb{F}_{2^k} .

 $N_i(\mathbf{a})$ square $\Rightarrow \forall j, N_{ij}(\bar{\mathbf{a}})$ squares \Rightarrow replace quadratic eqs by linear eqs

Proposition: Number of squares

Let $h_1(x) = \sum_{i=t}^{s} \alpha_i x^i$, and let $\mathbf{L} = \mathbf{s} - \mathbf{t} + \mathbf{1}$ be the **length** of $h_1(x)$. There are exactly $\mathbf{g} - \mathbf{L} - \mathbf{1}$ squares among the $N_i(\mathbf{a})$.

Consequence: $(\mathbf{n} - \mathbf{1})(\mathbf{g} - \mathbf{L} - \mathbf{1})$ replacements in $\{N_{ij}(\mathbf{\bar{a}}) = 0\}_{j>0, i \leq ng}$. Find $\mathbf{n} - \mathbf{1}$ more if $\alpha_s \in \mathbb{F}_{2^k}$.

Structure of DP_R in even characteristic, part 2

In $\mathcal{H}: y^2 + h_1(x)y = h_0(x)$, we usually have $h_1(x)$ monic.

Proposition: N_{m-1} is univariate Let $\mathbf{a} = (a_1, \dots, a_d)$. Then $N_{m-1}(a_d) = a_d^2 + a_d + \lambda$ for some $\lambda \in \mathbb{F}_{2^{kn}}$.

Rewrite:
$$N_{m-1}(a_d) = a_{d,0}^2 + a_{d,0} + \lambda_0 + \sum_{j \ge 1} a_{d,j}^2 \mathbf{t}^{2j} + \sum_{j \ge 1} (a_{d,j} + \lambda_j) \mathbf{t}^j$$

= $N_{m-1,0}(\bar{a_d}) + \sum_{j \ge 1} N_{m-1,j}(a_{d,1}, \dots, a_{d,n-1}) \mathbf{t}^j$.

Proposition: "presolving"

 $\{N_{m-1,j}(a_{d,1},\ldots,a_{d,n-1})\}_{j\geq 1}$ is 0-dimensional and has a solution in \mathbb{F}_{2^k} whp.

Consequence: determines n-1 vars in the full system, removes n-1 eqs.

Analysis of degree reduction

Base field $\mathbb{F}_{2^{kn}}$, m = ng. Implies d = (n-1)g. Let L be the length of h_1 .

Genericity assumption:

 PDP_{ng} systems behave like regular systems of dimension 0.

Before reduction:

•
$$\#\bar{\mathbf{a}} = n(n-1)g$$

•
$$\#$$
eqs = $n(n-1)g$

• Eqs have deg = 2

$$\Rightarrow d_{old} = 2^{n(n-1)g}$$

After reduction:

- n-1 determined vars
- (n-1)(g-L-1) linear eqs

$$\Rightarrow d_{new} = 2^{(n-1)((n-1)g+L-2)}$$

$$2^{(n-1)((n-1)g-1)} \leq d_{new} \leq 2^{(n-1)(ng-1)}$$

factor $2^{(n-1)(g+1)}$ $\frac{d_{old}}{d_{new}}$ 2^{n-1}

Impact of the reduction

For g = 2, n = 3, $d_{old} = 2^{12} = 4096$, $d_{new} = 2^6 = 64$.

• Toy-example for one PDP₆ instance:

 $\begin{array}{c|c|c|c|c|c|c|c|c|} \hline fields & tool & time for d_{old} & time for d_{new} & ratio \\ \hline \mathbb{F}_{245} \mid \mathbb{F}_{215}$ & Magma 2.19 & \sim 1500s & \sim 0.029s & 75000 \\ \hline \end{array}$

• \mathcal{H} with $L_{h_1} = 1$, over $\mathbb{F}_{2^{93}} = \mathbb{F}_{2^{31}\cdot 3}$ and $\#\mathcal{J}(\mathcal{H}) = 2 \times 3 \times p$, with $\log p = 184$.

#cores	tool	old	this work
8000	С	\sim 30 years	\sim 7 days
	(optimized ²)	unfeasible	practical

• comparison with recent DL over 768 bits finite field:

	#rels	harvesting time	matrix size*	matrix density*	log p	#linalg.
[KDL+'17]	$\sim 2^{33}$	6 months	2 ²⁴	184	768	$\sim 2^{56}$
our work	$\sim 2^{31}$	7 days	2 ²⁸	87	184	$\sim 2^{63}$
			I		-	I

²F5 with code gen., Sparse-FGLM [FM'11], NTL lib.

Conclusion

Target: harvesting in Index-Calculus for hyperelliptic curves over \mathbb{F}_{q^n} .

Results:

- degree reduction if q = 2^k
 for hyperelliptics
- practical, meaningful computations in genus 2

Questions:

- What about *q* odd ?
- What about non-hyperelliptics ?
- Reduction of \mathcal{F} 's size ?

Merci !