A Full RNS Implementation of Fan and Vercauteren Somewhat Homomorphic Encryption Scheme

Presented by: Vincent Zucca¹

Joint work with: Jean-Claude Bajard¹, Julien Eynard² and Anwar Hasan²

¹Sorbonne Universités, UPMC Univ. Paris 06, CNRS, LIP6 UMR 7606, France ²Dept. of Electrical and Computer Engineering, University of Waterloo, Canada

April 24th 2017

Context

Homomorphic Encryption (HE):

"Noisy encryption"

- Each ciphertext contains a noise.
- After each homomorphic operation the noise grows.
- Decryption remains correct until the noise reaches a certain bound.
 - \implies Limited number of operations.
 - \implies "Somewhat" Homomorphic Encryption (SHE).

Problem: not practical enough yet.

Context

Homomorphic Encryption (HE):

"Noisy encryption"

- Each ciphertext contains a noise.
- After each homomorphic operation the noise grows.
- Decryption remains correct until the noise reaches a certain bound.
 - \implies Limited number of operations.
 - \implies "Somewhat" Homomorphic Encryption (SHE).

Goal: arithmetical optimization of a certain type of SHE schemes.

Chinese Remainder Theorem

Pairwise **coprime** integers $\{q_1, \ldots, q_k\}$: "RNS base" $(q = \prod_{i=1}^k q_i)$,

 $\mathbb{Z}/q\mathbb{Z}\cong\mathbb{Z}/q_1\mathbb{Z} imes\ldots imes\mathbb{Z}/q_k\mathbb{Z}$

Chinese Remainder Theorem

Pairwise **coprime** integers $\{q_1, \ldots, q_k\}$: "RNS base" $(q = \prod_{i=1}^k q_i)$,

$$\mathbb{Z}/q\mathbb{Z}\cong\mathbb{Z}/q_1\mathbb{Z} imes\ldots imes\mathbb{Z}/q_k\mathbb{Z}$$

Residue Number Systems

- Large $x \in [0, q) \cap \mathbb{Z} \leftrightarrow k$ small residues $(x \mod q_1, \dots, x \mod q_k)$.
- Parallel, carry-free arithmetic $+, -, \times, \div$ on residues.
- Non positional number system.

Chinese Remainder Theorem

Pairwise **coprime** integers $\{q_1, \ldots, q_k\}$: "RNS base" $(q = \prod_{i=1}^k q_i)$,

$$\mathbb{Z}/q\mathbb{Z}\cong\mathbb{Z}/q_1\mathbb{Z} imes\ldots imes\mathbb{Z}/q_k\mathbb{Z}$$

Residue Number Systems

- Large $x \in [0, q) \cap \mathbb{Z} \leftrightarrow k$ small residues $(x \mod q_1, \dots, x \mod q_k)$.
- Parallel, carry-free arithmetic $+, -, \times, \div$ on residues.
- Non positional number system.

Base extensions $\mathcal{B}_q = \{q_1, \ldots, q_k\} \rightarrow \mathcal{B} = \{m_1, \ldots, m_\ell\}$

Fast approximate base extension: x in B_q → |x|_q + αq in B
 ∞→ Fast but q-overflow α ∈ [0, k) ∩ Z

• If needed, add an extra modulus m_{sk} to \mathcal{B}_q to correct lpha efficiently

Ambiant space in FV scheme (Fan and Vercauteren, 2012)

 $\mathcal{R} = \mathbb{Z}[X]/(X^n+1), \ n = 2^h \leftrightarrow$ integer polynomials of degree < n

- *t*: **plaintext** modulus, $\boldsymbol{m} \in \mathcal{R}_t = \mathcal{R}/t\mathcal{R}$ (coeff. modulo *t*)
- *q*: **ciphertext** modulus ($\gg t$), $\boldsymbol{c} \in \mathcal{R}_q \times \mathcal{R}_q$ (coeff. modulo *q*)

Ambiant space in FV scheme (Fan and Vercauteren, 2012)

 $\mathcal{R} = \mathbb{Z}[X]/(X^n+1), \ n = 2^h \leftrightarrow$ integer polynomials of degree < n

- *t*: **plaintext** modulus, $\boldsymbol{m} \in \mathcal{R}_t = \mathcal{R}/t\mathcal{R}$ (coeff. modulo *t*)
- q: ciphertext modulus ($\gg t$), $c \in \mathcal{R}_q \times \mathcal{R}_q$ (coeff. modulo q)

Common optimizations for arithmetic on...

...coefficients: **Residue Number Systems** q free of form: choose $q = q_1 \dots q_k$ (small prime moduli q_i)

 $\mathbb{Z}/q\mathbb{Z}\cong\mathbb{Z}/q_1\mathbb{Z}\times\ldots\times\mathbb{Z}/q_k\mathbb{Z}$

Ambiant space in FV scheme (Fan and Vercauteren, 2012)

 $\mathcal{R} = \mathbb{Z}[X]/(X^n+1)$, $n = 2^h \leftrightarrow$ integer polynomials of degree < n

- *t*: **plaintext** modulus, $\boldsymbol{m} \in \mathcal{R}_t = \mathcal{R}/t\mathcal{R}$ (coeff. modulo *t*)
- q: ciphertext modulus ($\gg t$), $c \in \mathcal{R}_q \times \mathcal{R}_q$ (coeff. modulo q)

Common optimizations for arithmetic on...

...coefficients: Residue Number Systems

q free of form: choose $q = q_1 \dots q_k$ (small prime moduli q_i)

$$\mathbb{Z}/q\mathbb{Z}\cong\mathbb{Z}/q_1\mathbb{Z}\times\ldots\times\mathbb{Z}/q_k\mathbb{Z}$$

...polynomials: Number Theoretic Transform

Optimized polynomial product (*n* a power of 2): $\mathcal{O}(n \log_2(n)) \rightarrow$ matches with RNS representation

Vincent Zucca (UPMC)

- χ_{key} and χ_{err} : "**narrow**" distributions on \mathcal{R}_q ;
- \mathcal{U} : **uniform** distribution on \mathcal{R}_q

- χ_{key} and χ_{err} : "**narrow**" distributions on \mathcal{R}_q ;
- \mathcal{U} : **uniform** distribution on \mathcal{R}_q

Key Generation

- χ_{key} and χ_{err} : "narrow" distributions on \mathcal{R}_q ;
- \mathcal{U} : **uniform** distribution on \mathcal{R}_q

Key Generation

Encryption

 $[\boldsymbol{m}]_t \in \mathcal{R}_t$ to be encrypted, public key \mathbf{pk} ,

9 sample
$$(\boldsymbol{e_1}, \boldsymbol{e_2}, \boldsymbol{u}) \leftarrow (\chi_{err})^2 \times \mathcal{U}$$

3 output
$$(\boldsymbol{c}_0, \boldsymbol{c}_1) = ([\Delta[\boldsymbol{m}]_t + \boldsymbol{p}_0 \boldsymbol{u} + \boldsymbol{e}_1]_q, [\boldsymbol{p}_1 \boldsymbol{u} + \boldsymbol{e}_2]_q) \quad (\Delta = \lfloor \frac{q}{t} \rfloor)$$

- χ_{key} and χ_{err} : "**narrow**" distributions on \mathcal{R}_q ;
- \mathcal{U} : **uniform** distribution on \mathcal{R}_q

Key Generation

Encryption

 $[\boldsymbol{m}]_t \in \mathcal{R}_t$ to be encrypted, public key \mathbf{pk} ,

9 sample
$$(\boldsymbol{e_1}, \boldsymbol{e_2}, \boldsymbol{u}) \leftarrow (\chi_{err})^2 \times \mathcal{U}$$

3 output $(\mathbf{c}_0, \mathbf{c}_1) = ([\Delta[\mathbf{m}]_t + \mathbf{p}_0 \mathbf{u} + \mathbf{e}_1]_q, [\mathbf{p}_1 \mathbf{u} + \mathbf{e}_2]_q) \quad (\Delta = \lfloor \frac{q}{t} \rfloor)$

 $[\boldsymbol{c}_0 + \boldsymbol{c}_1 \boldsymbol{s}]_q = \Delta[\boldsymbol{m}]_t + \boldsymbol{v} \pmod{q}$ with \boldsymbol{v} : "fresh noise"

The original decryption process (c_0, c_1) encrypting $[m]_t$ with noise \mathbf{v} : $[c_0 + c_1 s]_q = \Delta[m]_t + \mathbf{v} + q\mathbf{r}$

1 scale-down:
$$\frac{t}{q} \cdot [\boldsymbol{c}_0 + \boldsymbol{c}_1 \boldsymbol{s}]_q = [\boldsymbol{m}]_t + \frac{\boldsymbol{v}'}{q} + t\boldsymbol{r}$$
2 round-off: $\lfloor \frac{t}{q} \cdot [\boldsymbol{c}_0 + \boldsymbol{c}_1 \boldsymbol{s}]_q \rfloor = [\boldsymbol{m}]_t + \lfloor \frac{\boldsymbol{v}'}{q} \rfloor + t\boldsymbol{r}$
If $\|\boldsymbol{v}\|_{\infty} = \max(|\boldsymbol{v}_i|) < B_{dec} \Rightarrow \lfloor \frac{\boldsymbol{v}'}{q} \rfloor = 0$
 $\operatorname{Dec}(\boldsymbol{c}, \mathbf{sk}) = [\lfloor \frac{t}{q} \cdot [\boldsymbol{c}_0 + \boldsymbol{c}_1 \boldsymbol{s}]_q]]_t = [[\boldsymbol{m}]_t + t\boldsymbol{r}]_t = [\boldsymbol{m}]_t.$

The original decryption process (c_0, c_1) encrypting $[m]_t$ with noise \mathbf{v} : $[c_0 + c_1 s]_q = \Delta[m]_t + \mathbf{v} + q\mathbf{r}$

• scale-down:
$$\frac{t}{q} \cdot [\boldsymbol{c}_0 + \boldsymbol{c}_1 \boldsymbol{s}]_q = [\boldsymbol{m}]_t + \frac{\boldsymbol{v}'}{q} + t\boldsymbol{r}$$

• round-off: $\lfloor \frac{t}{q} \cdot [\boldsymbol{c}_0 + \boldsymbol{c}_1 \boldsymbol{s}]_q \rfloor = [\boldsymbol{m}]_t + \lfloor \frac{\boldsymbol{v}'}{q} \rfloor + t\boldsymbol{r}$
If $\|\boldsymbol{v}\|_{\infty} = \max(|\boldsymbol{v}_i|) < B_{dec} \Rightarrow \lfloor \frac{\boldsymbol{v}'}{q} \rfloor = 0$
 $\operatorname{Dec}(\boldsymbol{c}, \mathbf{sk}) = [\lfloor \frac{t}{q} \cdot [\boldsymbol{c}_0 + \boldsymbol{c}_1 \boldsymbol{s}]_q]]_t = [[\boldsymbol{m}]_t + t\boldsymbol{r}]_t = [\boldsymbol{m}]_t.$

Issue for RNS (non positional) representation How to compute $(\lfloor \frac{t}{q} \cdot x \rfloor \mod t)$ in RNS?

Our contribution: computing a round-off in RNS In RNS, exact division can be done efficiently, so we use:

$$\left\lfloor \frac{t}{q} \cdot x \right\rceil = \frac{tx - |tx|_q}{q} + \boldsymbol{b}, \ (\boldsymbol{b} \in \{0, 1\})$$

fast approximate extension of |tx|_q (in RNS) to RNS base {t}: FastBconv(tx, q, {t}) = |tx|_q + αq mod t (α ∈ [0, k) ∩ Z)
^{tx-(|tx|_q+αq)}/_q = [t/q ⋅ x] - α = [t/q ⋅ x] - E mod t (with E = α + b ≤ k)

Our contribution: computing a round-off in RNS In RNS, exact division can be done efficiently, so we use:

$$\left\lfloor \frac{t}{q} \cdot x \right\rceil = \frac{tx - |tx|_q}{q} + \mathbf{b}, \ (\mathbf{b} \in \{0, 1\})$$

• fast approximate extension of $|tx|_q$ (in RNS) to RNS base $\{t\}$: FastBconv $(tx, q, \{t\}) = |tx|_q + \alpha q \mod t$ ($\alpha \in [0, k) \cap \mathbb{Z}$) • $\frac{tx - (|tx|_q + \alpha q)}{q} = \lfloor \frac{t}{q} \cdot x \rfloor - \alpha = \lfloor \frac{t}{q} \cdot x \rceil - E \mod t$ (with $E = \alpha + b \leq k$) ($|tx| + \alpha q$)

Remark: since tx cancels modulo t, only compute $\frac{-(|tx|_q + \alpha q)}{q} \mod t$.

Our contribution: computing a round-off in RNS In RNS, exact division can be done efficiently, so we use:

$$\left\lfloor \frac{t}{q} \cdot x \right\rceil = \frac{tx - |tx|_q}{q} + \mathbf{b}, \ (\mathbf{b} \in \{0, 1\})$$

• fast approximate extension of $|tx|_q$ (in RNS) to RNS base $\{t\}$:

$$\mathtt{FastBconv}(tx,q,\{t\}) = |tx|_q + \alpha q \mod t \quad (\alpha \in [0,k) \cap \mathbb{Z})$$

Remark: since tx cancels modulo t, only compute $\frac{-(|tx|_q + \alpha q)}{q} \mod t$.

An error occurs

Need to correct the error E for a correct decryption.

Our contribution: correcting the error

Rewrite in \mathbb{Z} : $tx = \lfloor \frac{t}{q} \cdot x \rceil q + \lfloor tx \rfloor_q$ scale by $\gamma \in \mathbb{N}$: $\lfloor \gamma \frac{t}{q} \cdot x \rceil - E = \gamma \lfloor \frac{t}{q} \cdot x \rceil + \lfloor \gamma \frac{\lfloor tx \rfloor_q}{q} \rceil - E$

Our contribution: correcting the error

Rewrite in \mathbb{Z} : $tx = \lfloor \frac{t}{q} \cdot x \rfloor q + \lfloor tx \rfloor_q$ scale by $\gamma \in \mathbb{N}$: $\lfloor \gamma \frac{t}{r} \cdot x \rfloor - E = \gamma \lfloor \frac{t}{r} \cdot x \rfloor + \lfloor \gamma \frac{\lfloor tx \rfloor_q}{r}$

ale by
$$\gamma \in \mathbb{N}$$
: $\left| \gamma \frac{t}{q} \cdot x \right| - E = \gamma \left| \frac{t}{q} \cdot x \right| + \left| \gamma \frac{\lfloor t x \rfloor_q}{q} \right| - E$

Now comes the **trick**

If gap
$$\varepsilon > 0$$
 $\left(-\frac{q}{2} + \varepsilon \leqslant [tx]_q \leqslant \frac{q}{2} - \varepsilon\right)$ then if $\gamma \varepsilon \geqslant k + \frac{1}{2}$ we have:

$$\left| \left| \gamma \frac{[tx]_q}{q} \right| - E \right| < \frac{\gamma}{2}$$
 \rightsquigarrow compute $\left[\left| \gamma \frac{t}{q} \cdot x \right| - E \right]_{\gamma} = \left[\gamma \frac{[tx]_q}{q} \right] - E$ gives exactly the error

Our contribution: correcting the error

Rewrite in \mathbb{Z} : $tx = \lfloor \frac{t}{q} \cdot x \rfloor q + \lfloor tx \rfloor_q$ scale by $\gamma \in \mathbb{N}$: $\lfloor \gamma \frac{t}{\tau} \cdot x \rfloor - E = \gamma \lfloor \frac{t}{\tau} \cdot x \rfloor + \lfloor \gamma \frac{\lfloor tx \rfloor_q}{\tau} \rfloor$

scale by
$$\gamma \in \mathbb{N}$$
: $\left| \gamma \frac{t}{q} \cdot x \right| - E = \gamma \left| \frac{t}{q} \cdot x \right| + \left| \gamma \frac{[tx]_q}{q} \right| - E$

Now comes the **trick**

If gap $\varepsilon > 0$ $\left(-\frac{q}{2} + \varepsilon \leqslant [tx]_q \leqslant \frac{q}{2} - \varepsilon\right)$ then if $\gamma \varepsilon \geqslant k + \frac{1}{2}$ we have: $\left| \left| \gamma \frac{[tx]_q}{q} \right| - E \right| < \frac{\gamma}{2}$ \rightsquigarrow compute $\left[\left| \gamma \frac{t}{q} \cdot x \right| - E \right]_{\gamma} = \left[\gamma \frac{[tx]_q}{q} \right] - E$ gives exactly the error

Strategy

• Compute $\left[\gamma \frac{t}{a} \cdot x\right]$ modulo t and γ

2 Use centered remainder modulo γ to correct the error

Vincent Zucca (UPMC)

$\texttt{Dec}_{\texttt{RNS}}((\textbf{\textit{c}}_0, \textbf{\textit{c}}_1), \textbf{\textit{s}}, \gamma)$

Require: (c_0, c_1) an encryption of $[m]_t$, and s the secret key, both in base q; an integer γ coprime to t and q

- Ensure: $[m]_t$
 - 1: for $m \in \{t, \gamma\}$ do
 - 2: $\boldsymbol{s}^{(m)} \leftarrow \texttt{FastBconv}(-\gamma t(\boldsymbol{c_0} + \boldsymbol{c_1s}), q, \{m\}) \cdot |q^{-1}|_m$
 - 3: end for
 - 4: $\tilde{\boldsymbol{s}}^{(\gamma)} \leftarrow [\boldsymbol{s}^{(\gamma)}]_{\gamma}$
 - 5: $\boldsymbol{m}^{(t)} \leftarrow [(\boldsymbol{s}^{(t)} \tilde{\boldsymbol{s}}^{(\gamma)}) \times |\gamma^{-1}|_t]_t$
 - 6: **return** *m*^(*t*)

$\texttt{Dec}_{\texttt{RNS}}((\textbf{\textit{c}}_0, \textbf{\textit{c}}_1), \textbf{\textit{s}}, \gamma)$

Require: (c_0, c_1) an encryption of $[m]_t$, and s the secret key, both in base q; an integer γ coprime to t and q

- Ensure: $[m]_t$
 - 1: for $m \in \{t, \gamma\}$ do
 - 2: $\boldsymbol{s}^{(m)} \leftarrow \texttt{FastBconv}(-\gamma t(\boldsymbol{c_0} + \boldsymbol{c_1s}), q, \{m\}) \cdot |q^{-1}|_m$
 - 3: end for
 - 4: $\tilde{\boldsymbol{s}}^{(\gamma)} \leftarrow [\boldsymbol{s}^{(\gamma)}]_{\gamma}$
 - 5: $\boldsymbol{m}^{(t)} \leftarrow [(\boldsymbol{s}^{(t)} \tilde{\boldsymbol{s}}^{(\gamma)}) \times |\gamma^{-1}|_t]_t$
 - 6: **return** *m*^(*t*)

Results

- Better asymptotic complexity: $\mathcal{O}(n^3) \rightarrow \mathcal{O}(n^2 \log_2(n))$.
- Very flexible in terms of parallelization.
- Modified bound for noise: $\|\mathbf{v}\|_{\infty} < \frac{\Delta |q|_t}{2} \frac{k\Delta}{\gamma}$. (although no significant consequence in practice)

Original homomorphic multiplication of $(\mathbf{c}_0, \mathbf{c}_1)$ by $(\mathbf{c}_0', \mathbf{c}_1')$

Issues in original process for an RNS variant

 $\textbf{9} \text{ Product } (\tilde{\textbf{c}}_0, \tilde{\textbf{c}}_1, \tilde{\textbf{c}}_2) = (\textbf{c}_0 \textbf{c}_0', \textbf{c}_0 \textbf{c}_1' + \textbf{c}_0' \textbf{c}_1, \textbf{c}_1 \textbf{c}_1') \text{ over } \mathbb{Z}$

Original homomorphic multiplication of $(\mathbf{c}_0, \mathbf{c}_1)$ by $(\mathbf{c}_0', \mathbf{c}_1')$

Issues in original process for an RNS variant

- $\textbf{9} \text{ Product } (\tilde{\boldsymbol{c}}_0, \tilde{\boldsymbol{c}}_1, \tilde{\boldsymbol{c}}_2) = (\boldsymbol{c}_0 \boldsymbol{c}_0', \boldsymbol{c}_0 \boldsymbol{c}_1' + \boldsymbol{c}_0' \boldsymbol{c}_1, \boldsymbol{c}_1 \boldsymbol{c}_1') \text{ over } \mathbb{Z}$
- **2** Division + Round-off: $\hat{\boldsymbol{c}}_i = \lfloor \frac{t}{q} \cdot \tilde{\boldsymbol{c}}_i \rfloor$ $\rightsquigarrow [\hat{\boldsymbol{c}}_0 + \hat{\boldsymbol{c}}_1 \boldsymbol{s} + \hat{\boldsymbol{c}}_2 \boldsymbol{s}^2]_q = \Delta[\boldsymbol{m}_1 \boldsymbol{m}_2]_t + \boldsymbol{v}'' \mod q$

Original homomorphic multiplication of $(\mathbf{c}_0, \mathbf{c}_1)$ by $(\mathbf{c}_0', \mathbf{c}_1')$

Issues in original process for an RNS variant

 $\textbf{9} \ \ \mathsf{Product} \ (\tilde{\boldsymbol{c}}_0, \tilde{\boldsymbol{c}}_1, \tilde{\boldsymbol{c}}_2) = (\boldsymbol{c}_0 \boldsymbol{c}_0', \boldsymbol{c}_0 \boldsymbol{c}_1' + \boldsymbol{c}_0' \boldsymbol{c}_1, \boldsymbol{c}_1 \boldsymbol{c}_1') \ \text{over} \ \mathbb{Z}$

2 Division + Round-off:
$$\hat{\boldsymbol{c}}_i = \lfloor \frac{t}{q} \cdot \tilde{\boldsymbol{c}}_i \rfloor$$

 $\rightsquigarrow [\hat{\boldsymbol{c}}_0 + \hat{\boldsymbol{c}}_1 \boldsymbol{s} + \hat{\boldsymbol{c}}_2 \boldsymbol{s}^2]_q = \Delta[\boldsymbol{m}_1 \boldsymbol{m}_2]_t + \boldsymbol{v}'' \mod q$

3 Relinearization: $(\hat{\boldsymbol{c}}_0 + \hat{\boldsymbol{c}}_2 \boldsymbol{s}^2, \hat{\boldsymbol{c}}_1) \xrightarrow{\boldsymbol{s} \text{ private}} (\hat{\boldsymbol{c}}_0 + \hat{\boldsymbol{c}}_2 (\boldsymbol{s}^2 + \boldsymbol{e} + \boldsymbol{as}), \hat{\boldsymbol{c}}_1 - \boldsymbol{a}\hat{\boldsymbol{c}}_2)$

Original homomorphic multiplication of $(\mathbf{c}_0, \mathbf{c}_1)$ by $(\mathbf{c}_0', \mathbf{c}_1')$

Issues in original process for an RNS variant

 $\textbf{9} \ \ \mathsf{Product} \ (\tilde{\boldsymbol{c}}_0, \tilde{\boldsymbol{c}}_1, \tilde{\boldsymbol{c}}_2) = (\boldsymbol{c}_0 \boldsymbol{c}_0', \boldsymbol{c}_0 \boldsymbol{c}_1' + \boldsymbol{c}_0' \boldsymbol{c}_1, \boldsymbol{c}_1 \boldsymbol{c}_1') \ \text{over} \ \mathbb{Z}$

2 Division + Round-off:
$$\hat{c}_i = \lfloor \frac{t}{q} \cdot \tilde{c}_i \rfloor$$

 $\rightsquigarrow [\hat{c}_0 + \hat{c}_1 s + \hat{c}_2 s^2]_q = \Delta[m_1 m_2]_t + v'' \mod q$

Selinearization: $(\hat{c}_0 + \hat{c}_2 s^2, \hat{c}_1) \xrightarrow{s \text{ private}} (\hat{c}_0 + \hat{c}_2 (s^2 + e + as), \hat{c}_1 - a\hat{c}_2)$ Large noise growth $\|\hat{c}_2 \times e\|_{\infty} < q \times nB_{\text{err}} \rightarrow \text{Original solution is to...}$

Original homomorphic multiplication of $(\mathbf{c}_0, \mathbf{c}_1)$ by $(\mathbf{c}_0', \mathbf{c}_1')$

Issues in original process for an RNS variant

 $\textbf{9} \ \ \mathsf{Product} \ (\tilde{\boldsymbol{c}}_0, \tilde{\boldsymbol{c}}_1, \tilde{\boldsymbol{c}}_2) = (\boldsymbol{c}_0 \boldsymbol{c}_0', \boldsymbol{c}_0 \boldsymbol{c}_1' + \boldsymbol{c}_0' \boldsymbol{c}_1, \boldsymbol{c}_1 \boldsymbol{c}_1') \ \text{over} \ \mathbb{Z}$

2 Division + Round-off:
$$\hat{c}_i = \lfloor \frac{t}{q} \cdot \tilde{c}_i \rfloor$$

 $\rightsquigarrow [\hat{c}_0 + \hat{c}_1 s + \hat{c}_2 s^2]_q = \Delta[m_1 m_2]_t + v'' \mod q$

- **3** Relinearization: $(\hat{c}_0 + \hat{c}_2 s^2, \hat{c}_1) \xrightarrow{s \text{ private}} (\hat{c}_0 + \hat{c}_2 (s^2 + e + as), \hat{c}_1 a\hat{c}_2)$
 - Large noise growth $\|\hat{\boldsymbol{c}}_2 \times \boldsymbol{e}\|_{\infty} < q \times nB_{\mathtt{err}} \rightarrow \text{Original solution is to...}$
 - Decompose $\hat{\boldsymbol{c}}_2 = \boldsymbol{b}_0 + \boldsymbol{b}_1 \omega + \ldots + \boldsymbol{b}_\ell \omega^{\ell-1}$ in radix ω

Original homomorphic multiplication of $(\mathbf{c}_0, \mathbf{c}_1)$ by $(\mathbf{c}_0', \mathbf{c}_1')$

Issues in original process for an RNS variant

 $\textbf{9} \ \mathsf{Product} \ (\tilde{\boldsymbol{c}}_0, \tilde{\boldsymbol{c}}_1, \tilde{\boldsymbol{c}}_2) = (\boldsymbol{c}_0 \boldsymbol{c}_0', \boldsymbol{c}_0 \boldsymbol{c}_1' + \boldsymbol{c}_0' \boldsymbol{c}_1, \boldsymbol{c}_1 \boldsymbol{c}_1') \ \mathsf{over} \ \mathbb{Z}$

2 Division + Round-off:
$$\hat{c}_i = \lfloor \frac{t}{q} \cdot \tilde{c}_i \rfloor$$

 $\rightsquigarrow [\hat{c}_0 + \hat{c}_1 s + \hat{c}_2 s^2]_q = \Delta[m_1 m_2]_t + \mathbf{v}'' \mod q$

3 Relinearization: $(\hat{\boldsymbol{c}}_0 + \hat{\boldsymbol{c}}_2 \boldsymbol{s}^2, \hat{\boldsymbol{c}}_1) \xrightarrow{\boldsymbol{s} \text{ private}} (\hat{\boldsymbol{c}}_0 + \hat{\boldsymbol{c}}_2 (\boldsymbol{s}^2 + \boldsymbol{e} + \boldsymbol{as}), \hat{\boldsymbol{c}}_1 - \boldsymbol{a}\hat{\boldsymbol{c}}_2)$

- Large noise growth $\|\hat{\boldsymbol{c}}_2 \times \boldsymbol{e}\|_{\infty} < q \times nB_{\mathtt{err}} \rightarrow \text{Original solution is to...}$
- Decompose $\hat{m{c}}_2 = m{b}_0 + m{b}_1 \omega + \ldots + m{b}_\ell \omega^{\ell-1}$ in radix ω
- Public relinearization key: $([\mathbf{s}^2 \cdot (1, \omega, \dots, \omega^{\ell-1}) + \overrightarrow{\mathbf{e}} + \overrightarrow{\mathbf{a}}\mathbf{s}]_q, -\overrightarrow{\mathbf{a}})$

Original homomorphic multiplication of $(\mathbf{c}_0, \mathbf{c}_1)$ by $(\mathbf{c}_0', \mathbf{c}_1')$

Issues in original process for an RNS variant

 $\textbf{9} \ \mathsf{Product} \ (\tilde{\boldsymbol{c}}_0, \tilde{\boldsymbol{c}}_1, \tilde{\boldsymbol{c}}_2) = (\boldsymbol{c}_0 \boldsymbol{c}_0', \boldsymbol{c}_0 \boldsymbol{c}_1' + \boldsymbol{c}_0' \boldsymbol{c}_1, \boldsymbol{c}_1 \boldsymbol{c}_1') \ \mathsf{over} \ \mathbb{Z}$

2 Division + Round-off:
$$\hat{c}_i = \lfloor \frac{t}{q} \cdot \tilde{c}_i \rfloor$$

 $\rightsquigarrow [\hat{c}_0 + \hat{c}_1 s + \hat{c}_2 s^2]_q = \Delta[m_1 m_2]_t + \mathbf{v}'' \mod q$

3 Relinearization: $(\hat{\boldsymbol{c}}_0 + \hat{\boldsymbol{c}}_2 \boldsymbol{s}^2, \hat{\boldsymbol{c}}_1) \xrightarrow{\boldsymbol{s} \text{ private}} (\hat{\boldsymbol{c}}_0 + \hat{\boldsymbol{c}}_2 (\boldsymbol{s}^2 + \boldsymbol{e} + \boldsymbol{as}), \hat{\boldsymbol{c}}_1 - \boldsymbol{a}\hat{\boldsymbol{c}}_2)$

- Large noise growth $\|\hat{\boldsymbol{c}}_2 \times \boldsymbol{e}\|_{\infty} < q \times nB_{\mathtt{err}} \rightarrow \text{Original solution is to...}$
- Decompose $\hat{m{c}}_2 = m{b}_0 + m{b}_1 \omega + \ldots + m{b}_\ell \omega^{\ell-1}$ in radix ω
- Public relinearization key: $([\mathbf{s}^2 \cdot (1, \omega, \dots, \omega^{\ell-1}) + \overrightarrow{\mathbf{e}} + \overrightarrow{\mathbf{a}} \mathbf{s}]_q, -\overrightarrow{\mathbf{a}})$
- Smaller noise growth $\|(\boldsymbol{b}_0, \boldsymbol{b}_1, \dots, \boldsymbol{b}_\ell) \cdot \overrightarrow{\boldsymbol{e}}\|_{\infty} < \ell \omega \times nB_{\mathtt{err}}$

Original homomorphic multiplication of $(\mathbf{c}_0, \mathbf{c}_1)$ by $(\mathbf{c}_0', \mathbf{c}_1')$

Issues in original process for an RNS variant

 $\textbf{9} \text{ Product } (\tilde{\boldsymbol{c}}_0, \tilde{\boldsymbol{c}}_1, \tilde{\boldsymbol{c}}_2) = (\boldsymbol{c}_0 \boldsymbol{c}_0', \boldsymbol{c}_0 \boldsymbol{c}_1' + \boldsymbol{c}_0' \boldsymbol{c}_1, \boldsymbol{c}_1 \boldsymbol{c}_1') \text{ over } \mathbb{Z} \text{ (lift)}$

2 Division + Round-off: $\hat{c}_i = \lfloor \frac{t}{q} \cdot \tilde{c}_i \rfloor$ $\rightsquigarrow [\hat{c}_0 + \hat{c}_1 s + \hat{c}_2 s^2]_q = \Delta[m_1 m_2]_t + v'' \mod q$

3 Relinearization: $(\hat{\boldsymbol{c}}_0 + \hat{\boldsymbol{c}}_2 \boldsymbol{s}^2, \hat{\boldsymbol{c}}_1) \xrightarrow{\boldsymbol{s} \text{ private}} (\hat{\boldsymbol{c}}_0 + \hat{\boldsymbol{c}}_2 (\boldsymbol{s}^2 + \boldsymbol{e} + \boldsymbol{as}), \hat{\boldsymbol{c}}_1 - \boldsymbol{a}\hat{\boldsymbol{c}}_2)$

- Large noise growth $\|\hat{\boldsymbol{c}}_2 \times \boldsymbol{e}\|_{\infty} < q \times nB_{\mathtt{err}} \rightarrow \mathsf{Original}$ solution is to...
- Decompose $\hat{\boldsymbol{c}}_2 = \boldsymbol{b}_0 + \boldsymbol{b}_1 \omega + \ldots + \boldsymbol{b}_\ell \omega^{\ell-1}$ in radix ω
- Public relinearization key: $([s^2 \cdot (1, \omega, \dots, \omega^{\ell-1}) + \vec{e} + \vec{a}s]_q, -\vec{a})$
- Smaller noise growth $\|(\boldsymbol{b}_0, \boldsymbol{b}_1, \dots, \boldsymbol{b}_\ell) \cdot \overrightarrow{\boldsymbol{e}}\|_{\infty} < \ell \omega \times nB_{\mathtt{err}}$

Issues for RNS representation

Lift in \mathbb{Z} , division and rounding, using positional system in radix $\omega...$

- Problem 1: compute product $(\tilde{c}_0, \tilde{c}_1, \tilde{c}_2)$ in \mathbb{Z} . \rightarrow Solution: $\|\tilde{c}_i\|_{\infty} < \sim nq^2$: no lift in \mathbb{Z} ,
 - Fast extension to convert residues in second base B_{sk} = B ∪ {m_{sk}};
 compute (*c*₀, *c*₁, *c*₂) in q ∪ B_{sk}.

• Problem 1: compute product $(\tilde{c}_0, \tilde{c}_1, \tilde{c}_2)$ in \mathbb{Z} . \rightarrow Solution: $\|\tilde{c}_i\|_{\infty} < \sim nq^2$: no lift in \mathbb{Z} ,

If a second base B_{sk} = B ∪ {m_{sk}};
If compute (c̃₀, c̃₁, c̃₂) in q ∪ B_{sk}.

- Problem 2: division and round-off $\hat{c}_i = \lfloor \frac{t}{q} \cdot \tilde{c}_i \rfloor$ in RNS.
 - \rightarrow Solution: flooring instead of rounding in \mathcal{B}_{sk} ,
 - FastBconv($\tilde{c}_i, q, \mathcal{B}_{sk}$) and computation of flooring in \mathcal{B}_{sk} ;
 - ② $\hat{c}_i \leftarrow \text{FastBconvSK}(\tilde{c}_i, \mathcal{B}_{sk}, q)$ (no extra multiple of \mathcal{B}).

• Problem 1: compute product $(\tilde{c}_0, \tilde{c}_1, \tilde{c}_2)$ in \mathbb{Z} . \rightarrow Solution: $\|\tilde{c}_i\|_{\infty} < \sim nq^2$: no lift in \mathbb{Z} ,

If a set extension to convert residues in second base B_{sk} = B ∪ {m_{sk}};
If compute (c̃₀, c̃₁, c̃₂) in q ∪ B_{sk}.

- Problem 2: division and round-off ĉ_i = [t/q · č_i] in RNS.
 → Solution: flooring instead of rounding in B_{sk},
 PastBconv(č_i, q, B_{sk}) and computation of flooring in B_{sk};
 ĉ_i ← FastBconvSK(č_i, B_{sk}, q) (no extra multiple of B).
- Problem 3: decompose \hat{c}_2 in radix ω in base q. \rightarrow Solution: decompose \hat{c}_2 in an RNS way,

$$\hat{\boldsymbol{c}}_{2} = \left(|\hat{\boldsymbol{c}}_{2} \cdot \frac{q_{1}}{q}|_{q_{1}}, \cdots, |\hat{\boldsymbol{c}}_{2} \cdot \frac{q_{k}}{q}|_{q_{k}} \right); \\ \hat{\boldsymbol{c}}_{2} = \left(\left[\left(|\boldsymbol{s}^{2} \frac{q}{q_{1}}|_{q}, \cdots, |\boldsymbol{s}^{2} \frac{q}{q_{k}}|_{q} \right) + \vec{\boldsymbol{e}} + \vec{\boldsymbol{a}} \boldsymbol{s} \right]_{q}, \vec{\boldsymbol{a}} \right).$$

Results

- \bullet Prior costly operations over $\mathbb Z \leadsto$ fast RNS base extensions.
- Fairly equivalent noise growth.
- Same number of polynomial products \Rightarrow same asymptotic complexity.
- Better complexity for operations on coefficients.
- Well suited for parallelization.

Experiments

Software implementation

- C++,
- NFLlib (dedicated to RNS polynomial arith. in ${\cal R}$ with NTT),
- compared with^a standard approach with NFLlib + GMP 6.1.0,
- laptop under Fedora 22 with i7-4810MQ CPU @ 2.80GHz, g++ 5.3.1, Hyper-Threading and Turbo Boost turned off.

^ahttps://github.com/CryptoExperts/FV-NFLlib

Experiments - Speed-up factors

${\cal V}$ bit-size of moduli	$\log_2(n)$	11	12	13	14	15	$t - 2^{10}$
30	k	3	6	13	26	53	t - 2
62	k	1	3	6	12	25	$\gamma=2^{\circ}$ (sufficient; practical)

 $n \nearrow \text{NTT's}$ dominate computational effort \Rightarrow speed-up \searrow .

Vincent Zucca (UPMC)

FV RNS

Conclusion and perspectives

- Optimization of arithmetic on polynomials at the coefficient level.
 - Benefits to SHE scheme like FV.
 - No more need of any positional system: only RNS.
- Greater noise growth, but not significant in practice.
- Opens the door to highly competitive parallel implementation of homomorphic encryption on accelerator cards such as GPUs and FPGAs, to take full advantage of the parallelization potential offered by RNS and NTT representation.

Thank you for your attention, any question ?